Loading…

Entropy of rigid k-mers on a square lattice

Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named k-mers), which cover completely a square lattice. Our calculations were made considering three different constructions, using periodical and helical boundary conditions. One of those constructio...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2023-01, Vol.107 (1-1), p.014115-014115, Article 014115
Main Authors: Rodrigues, Lucas R, Stilck, J F, Dantas, W G
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013
cites cdi_FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013
container_end_page 014115
container_issue 1-1
container_start_page 014115
container_title Physical review. E
container_volume 107
creator Rodrigues, Lucas R
Stilck, J F
Dantas, W G
description Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named k-mers), which cover completely a square lattice. Our calculations were made considering three different constructions, using periodical and helical boundary conditions. One of those constructions, which we call profile method, was based on the calculations performed by Dhar and Rajesh to obtain a lower limit to the entropy of very large chains placed on the square lattice. This method, so far as we know, was never used before to define the transfer matrix, but turned out to be very useful, since it produces matrices with smaller dimensions than those obtained using the usual approach. Our results were obtained for chain sizes ranging from k=2 to k=10 and they are compared with results already available in the literature. In the case of dimers (k=2) our results are compatible with the exact result. For trimers (k=3), recently investigated by Ghosh et al., also our results were compatible, with the same happening for the simulational estimates obtained by Pasinetti et al. in the whole range of rod sizes. Our results are also consistent with the asymptotic expression for the behavior of the entropy as a function of the size k, proposed by Dhar and Rajesh for very large rods (k≫1).
doi_str_mv 10.1103/PhysRevE.107.014115
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854431949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854431949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013</originalsourceid><addsrcrecordid>eNo9kFtLwzAUx4MoTuY-gSB5FKTznNzaPMqYFxgoos8hTROttuuWtMK-vZNdns6fw_8CP0KuEKaIwO9evzbpzf_Opwj5FFAgyhNywUQOGYDkp0ct5IhMUvoGAFSgc2TnZMRVrvNCqQtyO1_2sVttaBdorD_riv5krY-JdktqaVoPNnra2L6vnb8kZ8E2yU_2d0w-Hubvs6ds8fL4PLtfZI6D7DPGgi9spTxzIqjScrRKOOBaWuFEUWldCFeiCEGjtpxLnfuKB-VDySoHyMfkZte7it168Kk3bZ2cbxq79N2QDCukEBy10Fsr31ld7FKKPphVrFsbNwbB_IMyB1DbR252oLap6_3AULa-OmYOWPgfEdtkGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2854431949</pqid></control><display><type>article</type><title>Entropy of rigid k-mers on a square lattice</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Rodrigues, Lucas R ; Stilck, J F ; Dantas, W G</creator><creatorcontrib>Rodrigues, Lucas R ; Stilck, J F ; Dantas, W G</creatorcontrib><description>Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named k-mers), which cover completely a square lattice. Our calculations were made considering three different constructions, using periodical and helical boundary conditions. One of those constructions, which we call profile method, was based on the calculations performed by Dhar and Rajesh to obtain a lower limit to the entropy of very large chains placed on the square lattice. This method, so far as we know, was never used before to define the transfer matrix, but turned out to be very useful, since it produces matrices with smaller dimensions than those obtained using the usual approach. Our results were obtained for chain sizes ranging from k=2 to k=10 and they are compared with results already available in the literature. In the case of dimers (k=2) our results are compatible with the exact result. For trimers (k=3), recently investigated by Ghosh et al., also our results were compatible, with the same happening for the simulational estimates obtained by Pasinetti et al. in the whole range of rod sizes. Our results are also consistent with the asymptotic expression for the behavior of the entropy as a function of the size k, proposed by Dhar and Rajesh for very large rods (k≫1).</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.107.014115</identifier><identifier>PMID: 36797866</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-01, Vol.107 (1-1), p.014115-014115, Article 014115</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013</citedby><cites>FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013</cites><orcidid>0000-0002-3204-1953 ; 0000-0001-5818-6299 ; 0000-0002-3828-6580</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36797866$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rodrigues, Lucas R</creatorcontrib><creatorcontrib>Stilck, J F</creatorcontrib><creatorcontrib>Dantas, W G</creatorcontrib><title>Entropy of rigid k-mers on a square lattice</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named k-mers), which cover completely a square lattice. Our calculations were made considering three different constructions, using periodical and helical boundary conditions. One of those constructions, which we call profile method, was based on the calculations performed by Dhar and Rajesh to obtain a lower limit to the entropy of very large chains placed on the square lattice. This method, so far as we know, was never used before to define the transfer matrix, but turned out to be very useful, since it produces matrices with smaller dimensions than those obtained using the usual approach. Our results were obtained for chain sizes ranging from k=2 to k=10 and they are compared with results already available in the literature. In the case of dimers (k=2) our results are compatible with the exact result. For trimers (k=3), recently investigated by Ghosh et al., also our results were compatible, with the same happening for the simulational estimates obtained by Pasinetti et al. in the whole range of rod sizes. Our results are also consistent with the asymptotic expression for the behavior of the entropy as a function of the size k, proposed by Dhar and Rajesh for very large rods (k≫1).</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLwzAUx4MoTuY-gSB5FKTznNzaPMqYFxgoos8hTROttuuWtMK-vZNdns6fw_8CP0KuEKaIwO9evzbpzf_Opwj5FFAgyhNywUQOGYDkp0ct5IhMUvoGAFSgc2TnZMRVrvNCqQtyO1_2sVttaBdorD_riv5krY-JdktqaVoPNnra2L6vnb8kZ8E2yU_2d0w-Hubvs6ds8fL4PLtfZI6D7DPGgi9spTxzIqjScrRKOOBaWuFEUWldCFeiCEGjtpxLnfuKB-VDySoHyMfkZte7it168Kk3bZ2cbxq79N2QDCukEBy10Fsr31ld7FKKPphVrFsbNwbB_IMyB1DbR252oLap6_3AULa-OmYOWPgfEdtkGg</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Rodrigues, Lucas R</creator><creator>Stilck, J F</creator><creator>Dantas, W G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3204-1953</orcidid><orcidid>https://orcid.org/0000-0001-5818-6299</orcidid><orcidid>https://orcid.org/0000-0002-3828-6580</orcidid></search><sort><creationdate>20230101</creationdate><title>Entropy of rigid k-mers on a square lattice</title><author>Rodrigues, Lucas R ; Stilck, J F ; Dantas, W G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodrigues, Lucas R</creatorcontrib><creatorcontrib>Stilck, J F</creatorcontrib><creatorcontrib>Dantas, W G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodrigues, Lucas R</au><au>Stilck, J F</au><au>Dantas, W G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy of rigid k-mers on a square lattice</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>107</volume><issue>1-1</issue><spage>014115</spage><epage>014115</epage><pages>014115-014115</pages><artnum>014115</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>Using the transfer matrix technique, we estimate the entropy for a gas of rods of sizes equal to k (named k-mers), which cover completely a square lattice. Our calculations were made considering three different constructions, using periodical and helical boundary conditions. One of those constructions, which we call profile method, was based on the calculations performed by Dhar and Rajesh to obtain a lower limit to the entropy of very large chains placed on the square lattice. This method, so far as we know, was never used before to define the transfer matrix, but turned out to be very useful, since it produces matrices with smaller dimensions than those obtained using the usual approach. Our results were obtained for chain sizes ranging from k=2 to k=10 and they are compared with results already available in the literature. In the case of dimers (k=2) our results are compatible with the exact result. For trimers (k=3), recently investigated by Ghosh et al., also our results were compatible, with the same happening for the simulational estimates obtained by Pasinetti et al. in the whole range of rod sizes. Our results are also consistent with the asymptotic expression for the behavior of the entropy as a function of the size k, proposed by Dhar and Rajesh for very large rods (k≫1).</abstract><cop>United States</cop><pmid>36797866</pmid><doi>10.1103/PhysRevE.107.014115</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3204-1953</orcidid><orcidid>https://orcid.org/0000-0001-5818-6299</orcidid><orcidid>https://orcid.org/0000-0002-3828-6580</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2023-01, Vol.107 (1-1), p.014115-014115, Article 014115
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2854431949
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Entropy of rigid k-mers on a square lattice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy%20of%20rigid%20k-mers%20on%20a%20square%20lattice&rft.jtitle=Physical%20review.%20E&rft.au=Rodrigues,%20Lucas%20R&rft.date=2023-01-01&rft.volume=107&rft.issue=1-1&rft.spage=014115&rft.epage=014115&rft.pages=014115-014115&rft.artnum=014115&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.107.014115&rft_dat=%3Cproquest_cross%3E2854431949%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-22fe8ad6e2c4f6ba31a64c0395a4c48d9984cb14ff919a33597ed3f6efb2dc013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2854431949&rft_id=info:pmid/36797866&rfr_iscdi=true