Loading…
Enhanced dispersion in an oscillating array of harmonic traps
Experiment, theory, and simulation are employed to understand the dispersion of colloidal particles in a periodic array of oscillating harmonic traps generated by optical tweezers. In the presence of trap oscillation, a nonmonotonic and anisotropic dispersion is observed. Surprisingly, the stiffest...
Saved in:
Published in: | Physical review. E 2023-01, Vol.107 (1-1), p.014601-014601, Article 014601 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Experiment, theory, and simulation are employed to understand the dispersion of colloidal particles in a periodic array of oscillating harmonic traps generated by optical tweezers. In the presence of trap oscillation, a nonmonotonic and anisotropic dispersion is observed. Surprisingly, the stiffest traps produce the largest dispersion at a critical frequency, and the particles diffuse significantly faster in the direction of oscillation than those undergoing passive Stokes-Einstein-Sutherland diffusion. Theoretical predictions for the effective diffusivity of the particles as a function of trap stiffness and oscillation frequency are developed using generalized Taylor dispersion theory and Brownian dynamics simulations. Both theory and simulation demonstrate excellent agreement with the experiments, and reveal a "slingshot" mechanism that predicts a significant enhancement of colloidal diffusion in dynamic external fields. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.107.014601 |