Loading…
Registration of 3-D images using weighted geometrical features
The authors present a weighted geometrical feature (WGF) registration algorithm. Its efficacy is demonstrated by combining points and a surface. The technique is an extension of Besl and McKay's (1992) iterative closest point (ICP) algorithm. The authors use the WGF algorithm to register X-ray...
Saved in:
Published in: | IEEE transactions on medical imaging 1996-12, Vol.15 (6), p.836-849 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The authors present a weighted geometrical feature (WGF) registration algorithm. Its efficacy is demonstrated by combining points and a surface. The technique is an extension of Besl and McKay's (1992) iterative closest point (ICP) algorithm. The authors use the WGF algorithm to register X-ray computed tomography (CT) and T2-weighted magnetic resonance (MR) volume head images acquired from eleven patients that underwent craniotomies in a neurosurgical clinical trial. Each patient had five external markers attached to transcutaneous posts screwed into the outer table of the skull. The authors define registration error as the distance between positions of corresponding markers that are not used for registration. The CT and MR images are registered using fiducial paints (marker positions) only, a surface only, and various weighted combinations of points and a surface. The CT surface is derived from contours corresponding to the inner surface of the skull. The MR surface is derived from contours corresponding to the cerebrospinal fluid (CSF)-dura interface. Registration using points and a surface is found to be significantly more accurate then registration using only points or a surface. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/42.544501 |