Loading…

High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries

The rate capability of various lithium-ion half-cells was investigated. Our study focuses on the performance of the carbon negative electrode, which is composed of TIMREX SFG synthetic graphite material of varying particle size distribution. All cells showed high discharge and comparatively low char...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Electrochemical Society 2005, Vol.152 (2), p.A474-A481
Main Authors: Buqa, Hilmi, Goers, Dietrich, Holzapfel, Michael, Spahr, Michael E., Novák, Petr
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rate capability of various lithium-ion half-cells was investigated. Our study focuses on the performance of the carbon negative electrode, which is composed of TIMREX SFG synthetic graphite material of varying particle size distribution. All cells showed high discharge and comparatively low charge rate capability. Up to the 20 C rate, discharge capacity retention of more than 96% was found for SFG6. The rate capability of the half-cells is a function of both the particle size distribution of the graphite material and the preparation method of the electrode. A transport limitation model is proposed to explain the restrictions of the high current performance of graphite electrodes. The key parameters found to influence the performance of a graphite negative electrode were the loading, the thickness, and the porosity of the electrode.
ISSN:0013-4651
DOI:10.1149/1.1851055