Loading…

A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus

Survival and infection of pathogenic bacteria, such as Staphylococcus aureus ( S. aureus ), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal–organic framework (MOF)-based fluorescence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2023-09, Vol.11 (35), p.8519-8527
Main Authors: Qiao, Jing, Chen, Xuanbo, Xu, Xingliang, Fan, Ben, Guan, Ying-Shi, Yang, Hong, Li, Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3
cites cdi_FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3
container_end_page 8527
container_issue 35
container_start_page 8519
container_title Journal of materials chemistry. B, Materials for biology and medicine
container_volume 11
creator Qiao, Jing
Chen, Xuanbo
Xu, Xingliang
Fan, Ben
Guan, Ying-Shi
Yang, Hong
Li, Quan
description Survival and infection of pathogenic bacteria, such as Staphylococcus aureus ( S. aureus ), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal–organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus . The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus , leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 10 3 –1.05 × 10 7 CFU mL −1 and a detection limit of 12 CFU mL −1 . Due to the unique high affinity of VAN to S. aureus , the nanoprobe shows high selectivity and sensitivity to S. aureus , even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.
doi_str_mv 10.1039/d3tb01428b
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2854968365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864108433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3</originalsourceid><addsrcrecordid>eNpdkb9OwzAQxi0EEhV04QkssSCkgJ3YiTO25a9UiYEObJHjnNsUJy52AsrGzMob8iS4FDFwy306_XT67j6ETii5oCTJL6ukKwllsSj30CgmnEQZp2L_T5OnQzT2fk1CCZqKhI3QxwQ30Enz9f5p3VK2tcLayQberHuOSumhwtr01oFX0CrAQdhWbhW04JYD7pxsvQaHw9RunC0Ba-vwql6uzIA9GFBd_Qq4gm6rbIutxo-d3KwGY5VVqvd40jvo_TE60NJ4GP_2I7S4uV7M7qL5w-39bDKPVJzHXSRiYCXjlcoYp7lMiSq5yEHrVJG0FCUIXVUiZxUormUmKc8kpzxOOYhUyeQIne3WBrMvPfiuaOpwnDGyBdv7Ihac5eE5KQ_o6T90bXvXBnOBShklgiVJoM53lHLWewe62Li6kW4oKCm2wRRXyWL6E8w0-QYLBoTs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864108433</pqid></control><display><type>article</type><title>A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Qiao, Jing ; Chen, Xuanbo ; Xu, Xingliang ; Fan, Ben ; Guan, Ying-Shi ; Yang, Hong ; Li, Quan</creator><creatorcontrib>Qiao, Jing ; Chen, Xuanbo ; Xu, Xingliang ; Fan, Ben ; Guan, Ying-Shi ; Yang, Hong ; Li, Quan</creatorcontrib><description>Survival and infection of pathogenic bacteria, such as Staphylococcus aureus ( S. aureus ), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal–organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus . The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus , leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 10 3 –1.05 × 10 7 CFU mL −1 and a detection limit of 12 CFU mL −1 . Due to the unique high affinity of VAN to S. aureus , the nanoprobe shows high selectivity and sensitivity to S. aureus , even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.</description><identifier>ISSN: 2050-750X</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d3tb01428b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Acetic acid ; Bacteria ; Cell walls ; Clean energy ; Energy transfer ; Fluorescein isothiocyanate ; Fluorescence ; Fluorescence resonance energy transfer ; Fruit juices ; Health risks ; Metal-organic frameworks ; Resonance ; Saliva ; Vancomycin ; Zirconium</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2023-09, Vol.11 (35), p.8519-8527</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3</citedby><cites>FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3</cites><orcidid>0000-0002-1263-986X ; 0000-0002-9042-360X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail></links><search><creatorcontrib>Qiao, Jing</creatorcontrib><creatorcontrib>Chen, Xuanbo</creatorcontrib><creatorcontrib>Xu, Xingliang</creatorcontrib><creatorcontrib>Fan, Ben</creatorcontrib><creatorcontrib>Guan, Ying-Shi</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><title>A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><description>Survival and infection of pathogenic bacteria, such as Staphylococcus aureus ( S. aureus ), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal–organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus . The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus , leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 10 3 –1.05 × 10 7 CFU mL −1 and a detection limit of 12 CFU mL −1 . Due to the unique high affinity of VAN to S. aureus , the nanoprobe shows high selectivity and sensitivity to S. aureus , even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.</description><subject>Acetic acid</subject><subject>Bacteria</subject><subject>Cell walls</subject><subject>Clean energy</subject><subject>Energy transfer</subject><subject>Fluorescein isothiocyanate</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fruit juices</subject><subject>Health risks</subject><subject>Metal-organic frameworks</subject><subject>Resonance</subject><subject>Saliva</subject><subject>Vancomycin</subject><subject>Zirconium</subject><issn>2050-750X</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkb9OwzAQxi0EEhV04QkssSCkgJ3YiTO25a9UiYEObJHjnNsUJy52AsrGzMob8iS4FDFwy306_XT67j6ETii5oCTJL6ukKwllsSj30CgmnEQZp2L_T5OnQzT2fk1CCZqKhI3QxwQ30Enz9f5p3VK2tcLayQberHuOSumhwtr01oFX0CrAQdhWbhW04JYD7pxsvQaHw9RunC0Ba-vwql6uzIA9GFBd_Qq4gm6rbIutxo-d3KwGY5VVqvd40jvo_TE60NJ4GP_2I7S4uV7M7qL5w-39bDKPVJzHXSRiYCXjlcoYp7lMiSq5yEHrVJG0FCUIXVUiZxUormUmKc8kpzxOOYhUyeQIne3WBrMvPfiuaOpwnDGyBdv7Ihac5eE5KQ_o6T90bXvXBnOBShklgiVJoM53lHLWewe62Li6kW4oKCm2wRRXyWL6E8w0-QYLBoTs</recordid><startdate>20230913</startdate><enddate>20230913</enddate><creator>Qiao, Jing</creator><creator>Chen, Xuanbo</creator><creator>Xu, Xingliang</creator><creator>Fan, Ben</creator><creator>Guan, Ying-Shi</creator><creator>Yang, Hong</creator><creator>Li, Quan</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1263-986X</orcidid><orcidid>https://orcid.org/0000-0002-9042-360X</orcidid></search><sort><creationdate>20230913</creationdate><title>A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus</title><author>Qiao, Jing ; Chen, Xuanbo ; Xu, Xingliang ; Fan, Ben ; Guan, Ying-Shi ; Yang, Hong ; Li, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>Bacteria</topic><topic>Cell walls</topic><topic>Clean energy</topic><topic>Energy transfer</topic><topic>Fluorescein isothiocyanate</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fruit juices</topic><topic>Health risks</topic><topic>Metal-organic frameworks</topic><topic>Resonance</topic><topic>Saliva</topic><topic>Vancomycin</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Jing</creatorcontrib><creatorcontrib>Chen, Xuanbo</creatorcontrib><creatorcontrib>Xu, Xingliang</creatorcontrib><creatorcontrib>Fan, Ben</creatorcontrib><creatorcontrib>Guan, Ying-Shi</creatorcontrib><creatorcontrib>Yang, Hong</creatorcontrib><creatorcontrib>Li, Quan</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Jing</au><au>Chen, Xuanbo</au><au>Xu, Xingliang</au><au>Fan, Ben</au><au>Guan, Ying-Shi</au><au>Yang, Hong</au><au>Li, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><date>2023-09-13</date><risdate>2023</risdate><volume>11</volume><issue>35</issue><spage>8519</spage><epage>8527</epage><pages>8519-8527</pages><issn>2050-750X</issn><eissn>2050-7518</eissn><abstract>Survival and infection of pathogenic bacteria, such as Staphylococcus aureus ( S. aureus ), pose a serious threat to human health. Efficient methods for recognizing and quantifying low levels of bacteria are imperiously needed. Herein, we introduce a metal–organic framework (MOF)-based fluorescence resonance energy transfer (FRET) nanoprobe for ratiometric detection of S. aureus . The nanoprobe utilizes blue-emitting 7-hydroxycoumarin-4-acetic acid (HCAA) encapsulated inside zirconium (Zr)-based MOFs as the energy donor and green-emitting fluorescein isothiocyanate (FITC) as the energy acceptor. Especially, vancomycin (VAN) is employed as the recognition moiety to bind to the cell wall of S. aureus , leading to the disassembly of VAN-PEG-FITC from MOF HCAA@UiO-66. As the distance between the donor and acceptor increases, the donor signal correspondingly increases as the FRET signal decreases. By calculating the fluorescence intensity ratio, S. aureus can be quantified with a dynamic range of 1.05 × 10 3 –1.05 × 10 7 CFU mL −1 and a detection limit of 12 CFU mL −1 . Due to the unique high affinity of VAN to S. aureus , the nanoprobe shows high selectivity and sensitivity to S. aureus , even in real samples like lake water, orange juice, and saliva. The FRET-based ratiometric fluorescence bacterial detection method demonstrated in this work has a prospect in portable application and may reduce the potential threat of pathogens to human health.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3tb01428b</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1263-986X</orcidid><orcidid>https://orcid.org/0000-0002-9042-360X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-750X
ispartof Journal of materials chemistry. B, Materials for biology and medicine, 2023-09, Vol.11 (35), p.8519-8527
issn 2050-750X
2050-7518
language eng
recordid cdi_proquest_miscellaneous_2854968365
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Acetic acid
Bacteria
Cell walls
Clean energy
Energy transfer
Fluorescein isothiocyanate
Fluorescence
Fluorescence resonance energy transfer
Fruit juices
Health risks
Metal-organic frameworks
Resonance
Saliva
Vancomycin
Zirconium
title A metal–organic framework-based fluorescence resonance energy transfer nanoprobe for highly selective detection of Staphylococcus Aureus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-06T09%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20metal%E2%80%93organic%20framework-based%20fluorescence%20resonance%20energy%20transfer%20nanoprobe%20for%20highly%20selective%20detection%20of%20Staphylococcus%20Aureus&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Qiao,%20Jing&rft.date=2023-09-13&rft.volume=11&rft.issue=35&rft.spage=8519&rft.epage=8527&rft.pages=8519-8527&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d3tb01428b&rft_dat=%3Cproquest_cross%3E2864108433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-82e4b45dc74519a60cb589eff6c06b8be8fdd894dec5fa7a157a515265e86ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864108433&rft_id=info:pmid/&rfr_iscdi=true