Loading…

Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection

MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2023-09, Vol.95 (35), p.13281-13288
Main Authors: Yang, Yuetong, Kong, Derong, Wu, Yungen, Chen, Yiheng, Dai, Changhao, Chen, Chang, Zhao, Junhong, Luo, Shi, Liu, Wentao, Liu, Yunqi, Wei, Dacheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63
cites cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63
container_end_page 13288
container_issue 35
container_start_page 13281
container_title Analytical chemistry (Washington)
container_volume 95
creator Yang, Yuetong
Kong, Derong
Wu, Yungen
Chen, Yiheng
Dai, Changhao
Chen, Chang
Zhao, Junhong
Luo, Shi
Liu, Wentao
Liu, Yunqi
Wei, Dacheng
description MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.
doi_str_mv 10.1021/acs.analchem.3c02433
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2856321406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856321406</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMD7-wMWAGzcTqx_zWoYYEyEoSLJxM9R0akiHedndEfL3zpDowoWLoqDq3Ls4jN1xGHMQ_BG1G2ODld5SPZYahJLyjI14JCCM01ScsxEAyFAkAJfsyrkdAOfA4xH7mKLH6uCNDhZobGeaYOIc1UV1CGfNFhtNm2BusdtSQ8HKYuOM860Nyn7WlbfoqD9580VBbd5fJ8ETedLetM0NuyixcnR72tds_TxbTRfh8m3-Mp0sQ5SR9CFtBCqR8VQmkClRFirLUpkpXmYAm00ilUhRaU26IIW8VEUkJZSYqCzhgmJ5zR6OvZ1tP_fkfF4bp6mqsKF273KRRrEUXMGA3v9Bd-3e9uYGKhZxBDziPaWOlLatc5bKvLOmRnvIOeSD8LwXnv8Iz0_C-xgcY8P3t_ffyDeT5Ybr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862650151</pqid></control><display><type>article</type><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</creator><creatorcontrib>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</creatorcontrib><description>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02433</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Assembly ; Biomarkers ; Biosensors ; Chemistry ; Diagnosis ; DNA probes ; Field effect transistors ; Graphene ; Lysates ; MicroRNAs ; miRNA ; Nucleic acids ; Probes ; Semiconductor devices ; Single-stranded DNA ; Stability analysis ; Synergistic effect ; Transistors</subject><ispartof>Analytical chemistry (Washington), 2023-09, Vol.95 (35), p.13281-13288</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</citedby><cites>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</cites><orcidid>0000-0001-5521-2316 ; 0000-0003-3593-9897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Yuetong</creatorcontrib><creatorcontrib>Kong, Derong</creatorcontrib><creatorcontrib>Wu, Yungen</creatorcontrib><creatorcontrib>Chen, Yiheng</creatorcontrib><creatorcontrib>Dai, Changhao</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Zhao, Junhong</creatorcontrib><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Wei, Dacheng</creatorcontrib><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</description><subject>Analytical chemistry</subject><subject>Assembly</subject><subject>Biomarkers</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Diagnosis</subject><subject>DNA probes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Lysates</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Nucleic acids</subject><subject>Probes</subject><subject>Semiconductor devices</subject><subject>Single-stranded DNA</subject><subject>Stability analysis</subject><subject>Synergistic effect</subject><subject>Transistors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EQRRtRMD7-wMWAGzcTqx_zWoYYEyEoSLJxM9R0akiHedndEfL3zpDowoWLoqDq3Ls4jN1xGHMQ_BG1G2ODld5SPZYahJLyjI14JCCM01ScsxEAyFAkAJfsyrkdAOfA4xH7mKLH6uCNDhZobGeaYOIc1UV1CGfNFhtNm2BusdtSQ8HKYuOM860Nyn7WlbfoqD9580VBbd5fJ8ETedLetM0NuyixcnR72tds_TxbTRfh8m3-Mp0sQ5SR9CFtBCqR8VQmkClRFirLUpkpXmYAm00ilUhRaU26IIW8VEUkJZSYqCzhgmJ5zR6OvZ1tP_fkfF4bp6mqsKF273KRRrEUXMGA3v9Bd-3e9uYGKhZxBDziPaWOlLatc5bKvLOmRnvIOeSD8LwXnv8Iz0_C-xgcY8P3t_ffyDeT5Ybr</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Yang, Yuetong</creator><creator>Kong, Derong</creator><creator>Wu, Yungen</creator><creator>Chen, Yiheng</creator><creator>Dai, Changhao</creator><creator>Chen, Chang</creator><creator>Zhao, Junhong</creator><creator>Luo, Shi</creator><creator>Liu, Wentao</creator><creator>Liu, Yunqi</creator><creator>Wei, Dacheng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5521-2316</orcidid><orcidid>https://orcid.org/0000-0003-3593-9897</orcidid></search><sort><creationdate>20230905</creationdate><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><author>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Assembly</topic><topic>Biomarkers</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Diagnosis</topic><topic>DNA probes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Lysates</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Nucleic acids</topic><topic>Probes</topic><topic>Semiconductor devices</topic><topic>Single-stranded DNA</topic><topic>Stability analysis</topic><topic>Synergistic effect</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuetong</creatorcontrib><creatorcontrib>Kong, Derong</creatorcontrib><creatorcontrib>Wu, Yungen</creatorcontrib><creatorcontrib>Chen, Yiheng</creatorcontrib><creatorcontrib>Dai, Changhao</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Zhao, Junhong</creatorcontrib><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Wei, Dacheng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuetong</au><au>Kong, Derong</au><au>Wu, Yungen</au><au>Chen, Yiheng</au><au>Dai, Changhao</au><au>Chen, Chang</au><au>Zhao, Junhong</au><au>Luo, Shi</au><au>Liu, Wentao</au><au>Liu, Yunqi</au><au>Wei, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-09-05</date><risdate>2023</risdate><volume>95</volume><issue>35</issue><spage>13281</spage><epage>13288</epage><pages>13281-13288</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c02433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5521-2316</orcidid><orcidid>https://orcid.org/0000-0003-3593-9897</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2023-09, Vol.95 (35), p.13281-13288
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2856321406
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Analytical chemistry
Assembly
Biomarkers
Biosensors
Chemistry
Diagnosis
DNA probes
Field effect transistors
Graphene
Lysates
MicroRNAs
miRNA
Nucleic acids
Probes
Semiconductor devices
Single-stranded DNA
Stability analysis
Synergistic effect
Transistors
title Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Hairpin%20Assembly-Enhanced%20Graphene%20Transistor%20for%20Ultrasensitive%20miRNA%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yang,%20Yuetong&rft.date=2023-09-05&rft.volume=95&rft.issue=35&rft.spage=13281&rft.epage=13288&rft.pages=13281-13288&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02433&rft_dat=%3Cproquest_cross%3E2856321406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862650151&rft_id=info:pmid/&rfr_iscdi=true