Loading…
Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection
MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of...
Saved in:
Published in: | Analytical chemistry (Washington) 2023-09, Vol.95 (35), p.13281-13288 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63 |
---|---|
cites | cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63 |
container_end_page | 13288 |
container_issue | 35 |
container_start_page | 13281 |
container_title | Analytical chemistry (Washington) |
container_volume | 95 |
creator | Yang, Yuetong Kong, Derong Wu, Yungen Chen, Yiheng Dai, Changhao Chen, Chang Zhao, Junhong Luo, Shi Liu, Wentao Liu, Yunqi Wei, Dacheng |
description | MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis. |
doi_str_mv | 10.1021/acs.analchem.3c02433 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2856321406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2856321406</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</originalsourceid><addsrcrecordid>eNp9kMtKA0EQRRtRMD7-wMWAGzcTqx_zWoYYEyEoSLJxM9R0akiHedndEfL3zpDowoWLoqDq3Ls4jN1xGHMQ_BG1G2ODld5SPZYahJLyjI14JCCM01ScsxEAyFAkAJfsyrkdAOfA4xH7mKLH6uCNDhZobGeaYOIc1UV1CGfNFhtNm2BusdtSQ8HKYuOM860Nyn7WlbfoqD9580VBbd5fJ8ETedLetM0NuyixcnR72tds_TxbTRfh8m3-Mp0sQ5SR9CFtBCqR8VQmkClRFirLUpkpXmYAm00ilUhRaU26IIW8VEUkJZSYqCzhgmJ5zR6OvZ1tP_fkfF4bp6mqsKF273KRRrEUXMGA3v9Bd-3e9uYGKhZxBDziPaWOlLatc5bKvLOmRnvIOeSD8LwXnv8Iz0_C-xgcY8P3t_ffyDeT5Ybr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862650151</pqid></control><display><type>article</type><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</creator><creatorcontrib>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</creatorcontrib><description>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.3c02433</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Analytical chemistry ; Assembly ; Biomarkers ; Biosensors ; Chemistry ; Diagnosis ; DNA probes ; Field effect transistors ; Graphene ; Lysates ; MicroRNAs ; miRNA ; Nucleic acids ; Probes ; Semiconductor devices ; Single-stranded DNA ; Stability analysis ; Synergistic effect ; Transistors</subject><ispartof>Analytical chemistry (Washington), 2023-09, Vol.95 (35), p.13281-13288</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 5, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</citedby><cites>FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</cites><orcidid>0000-0001-5521-2316 ; 0000-0003-3593-9897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yang, Yuetong</creatorcontrib><creatorcontrib>Kong, Derong</creatorcontrib><creatorcontrib>Wu, Yungen</creatorcontrib><creatorcontrib>Chen, Yiheng</creatorcontrib><creatorcontrib>Dai, Changhao</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Zhao, Junhong</creatorcontrib><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Wei, Dacheng</creatorcontrib><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</description><subject>Analytical chemistry</subject><subject>Assembly</subject><subject>Biomarkers</subject><subject>Biosensors</subject><subject>Chemistry</subject><subject>Diagnosis</subject><subject>DNA probes</subject><subject>Field effect transistors</subject><subject>Graphene</subject><subject>Lysates</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Nucleic acids</subject><subject>Probes</subject><subject>Semiconductor devices</subject><subject>Single-stranded DNA</subject><subject>Stability analysis</subject><subject>Synergistic effect</subject><subject>Transistors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKA0EQRRtRMD7-wMWAGzcTqx_zWoYYEyEoSLJxM9R0akiHedndEfL3zpDowoWLoqDq3Ls4jN1xGHMQ_BG1G2ODld5SPZYahJLyjI14JCCM01ScsxEAyFAkAJfsyrkdAOfA4xH7mKLH6uCNDhZobGeaYOIc1UV1CGfNFhtNm2BusdtSQ8HKYuOM860Nyn7WlbfoqD9580VBbd5fJ8ETedLetM0NuyixcnR72tds_TxbTRfh8m3-Mp0sQ5SR9CFtBCqR8VQmkClRFirLUpkpXmYAm00ilUhRaU26IIW8VEUkJZSYqCzhgmJ5zR6OvZ1tP_fkfF4bp6mqsKF273KRRrEUXMGA3v9Bd-3e9uYGKhZxBDziPaWOlLatc5bKvLOmRnvIOeSD8LwXnv8Iz0_C-xgcY8P3t_ffyDeT5Ybr</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Yang, Yuetong</creator><creator>Kong, Derong</creator><creator>Wu, Yungen</creator><creator>Chen, Yiheng</creator><creator>Dai, Changhao</creator><creator>Chen, Chang</creator><creator>Zhao, Junhong</creator><creator>Luo, Shi</creator><creator>Liu, Wentao</creator><creator>Liu, Yunqi</creator><creator>Wei, Dacheng</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5521-2316</orcidid><orcidid>https://orcid.org/0000-0003-3593-9897</orcidid></search><sort><creationdate>20230905</creationdate><title>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</title><author>Yang, Yuetong ; Kong, Derong ; Wu, Yungen ; Chen, Yiheng ; Dai, Changhao ; Chen, Chang ; Zhao, Junhong ; Luo, Shi ; Liu, Wentao ; Liu, Yunqi ; Wei, Dacheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical chemistry</topic><topic>Assembly</topic><topic>Biomarkers</topic><topic>Biosensors</topic><topic>Chemistry</topic><topic>Diagnosis</topic><topic>DNA probes</topic><topic>Field effect transistors</topic><topic>Graphene</topic><topic>Lysates</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Nucleic acids</topic><topic>Probes</topic><topic>Semiconductor devices</topic><topic>Single-stranded DNA</topic><topic>Stability analysis</topic><topic>Synergistic effect</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuetong</creatorcontrib><creatorcontrib>Kong, Derong</creatorcontrib><creatorcontrib>Wu, Yungen</creatorcontrib><creatorcontrib>Chen, Yiheng</creatorcontrib><creatorcontrib>Dai, Changhao</creatorcontrib><creatorcontrib>Chen, Chang</creatorcontrib><creatorcontrib>Zhao, Junhong</creatorcontrib><creatorcontrib>Luo, Shi</creatorcontrib><creatorcontrib>Liu, Wentao</creatorcontrib><creatorcontrib>Liu, Yunqi</creatorcontrib><creatorcontrib>Wei, Dacheng</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuetong</au><au>Kong, Derong</au><au>Wu, Yungen</au><au>Chen, Yiheng</au><au>Dai, Changhao</au><au>Chen, Chang</au><au>Zhao, Junhong</au><au>Luo, Shi</au><au>Liu, Wentao</au><au>Liu, Yunqi</au><au>Wei, Dacheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2023-09-05</date><risdate>2023</risdate><volume>95</volume><issue>35</issue><spage>13281</spage><epage>13288</epage><pages>13281-13288</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10–19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.analchem.3c02433</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5521-2316</orcidid><orcidid>https://orcid.org/0000-0003-3593-9897</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2023-09, Vol.95 (35), p.13281-13288 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2856321406 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Analytical chemistry Assembly Biomarkers Biosensors Chemistry Diagnosis DNA probes Field effect transistors Graphene Lysates MicroRNAs miRNA Nucleic acids Probes Semiconductor devices Single-stranded DNA Stability analysis Synergistic effect Transistors |
title | Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Hairpin%20Assembly-Enhanced%20Graphene%20Transistor%20for%20Ultrasensitive%20miRNA%20Detection&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Yang,%20Yuetong&rft.date=2023-09-05&rft.volume=95&rft.issue=35&rft.spage=13281&rft.epage=13288&rft.pages=13281-13288&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.3c02433&rft_dat=%3Cproquest_cross%3E2856321406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a353t-ed2a42918370942fb49983941f900dd73428a4ccecbe4a1f4b5330fa749712e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2862650151&rft_id=info:pmid/&rfr_iscdi=true |