Loading…
Hydrodynamic aspects of ejectors
The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD...
Saved in:
Published in: | Chemical engineering science 2005-11, Vol.60 (22), p.6391-6402 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363 |
container_end_page | 6402 |
container_issue | 22 |
container_start_page | 6391 |
container_title | Chemical engineering science |
container_volume | 60 |
creator | Kandakure, M.T. Gaikar, V.G. Patwardhan, A.W. |
description | The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori. |
doi_str_mv | 10.1016/j.ces.2005.04.055 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28566725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250905003210</els_id><sourcerecordid>28566725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLdc9JY4O9lNUjxJUSsUvOh52exOYEOa1J1W6L93pQVvnmYG3pt58wlxK6GQIKuHvnDEBQLoAlQBWp-JmWzqMlcK9LmYAcAiRw2LS3HF3KexriXMRLY6-Dj5w2g3wWWWt-R2nE1dRn3qpsjX4qKzA9PNqc7F58vzx3KVr99f35ZP69yVutnlqmpbQFLed1hblDUuoLWlTEmUt5VvpMJF45ActgrbEqEtZQcNdk4pKqtyLu6Pe7dx-toT78wmsKNhsCNNezbY6KqqUSehPApdnJgjdWYbw8bGg5FgflmY3iQW5peFAWVSguS5Oy237OzQRTu6wH_GOuFoAJPu8aij9Ol3oGjYBRod-RATDuOn8M-VHwRiceM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28566725</pqid></control><display><type>article</type><title>Hydrodynamic aspects of ejectors</title><source>ScienceDirect Journals</source><creator>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</creator><creatorcontrib>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</creatorcontrib><description>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2005.04.055</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Ejector ; Entrainment ; Exact sciences and technology ; Fluid mechanics ; Heat and mass transfer. Packings, plates ; Hydrodynamics ; Hydrodynamics of contact apparatus ; Momentum transfer ; Multiphase flow</subject><ispartof>Chemical engineering science, 2005-11, Vol.60 (22), p.6391-6402</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</citedby><cites>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17007802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kandakure, M.T.</creatorcontrib><creatorcontrib>Gaikar, V.G.</creatorcontrib><creatorcontrib>Patwardhan, A.W.</creatorcontrib><title>Hydrodynamic aspects of ejectors</title><title>Chemical engineering science</title><description>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Ejector</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Hydrodynamics</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLdc9JY4O9lNUjxJUSsUvOh52exOYEOa1J1W6L93pQVvnmYG3pt58wlxK6GQIKuHvnDEBQLoAlQBWp-JmWzqMlcK9LmYAcAiRw2LS3HF3KexriXMRLY6-Dj5w2g3wWWWt-R2nE1dRn3qpsjX4qKzA9PNqc7F58vzx3KVr99f35ZP69yVutnlqmpbQFLed1hblDUuoLWlTEmUt5VvpMJF45ActgrbEqEtZQcNdk4pKqtyLu6Pe7dx-toT78wmsKNhsCNNezbY6KqqUSehPApdnJgjdWYbw8bGg5FgflmY3iQW5peFAWVSguS5Oy237OzQRTu6wH_GOuFoAJPu8aij9Ol3oGjYBRod-RATDuOn8M-VHwRiceM</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Kandakure, M.T.</creator><creator>Gaikar, V.G.</creator><creator>Patwardhan, A.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051101</creationdate><title>Hydrodynamic aspects of ejectors</title><author>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Ejector</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Hydrodynamics</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandakure, M.T.</creatorcontrib><creatorcontrib>Gaikar, V.G.</creatorcontrib><creatorcontrib>Patwardhan, A.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandakure, M.T.</au><au>Gaikar, V.G.</au><au>Patwardhan, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic aspects of ejectors</atitle><jtitle>Chemical engineering science</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>60</volume><issue>22</issue><spage>6391</spage><epage>6402</epage><pages>6391-6402</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2005.04.055</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2509 |
ispartof | Chemical engineering science, 2005-11, Vol.60 (22), p.6391-6402 |
issn | 0009-2509 1873-4405 |
language | eng |
recordid | cdi_proquest_miscellaneous_28566725 |
source | ScienceDirect Journals |
subjects | Applied sciences Chemical engineering Ejector Entrainment Exact sciences and technology Fluid mechanics Heat and mass transfer. Packings, plates Hydrodynamics Hydrodynamics of contact apparatus Momentum transfer Multiphase flow |
title | Hydrodynamic aspects of ejectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20aspects%20of%20ejectors&rft.jtitle=Chemical%20engineering%20science&rft.au=Kandakure,%20M.T.&rft.date=2005-11-01&rft.volume=60&rft.issue=22&rft.spage=6391&rft.epage=6402&rft.pages=6391-6402&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2005.04.055&rft_dat=%3Cproquest_cross%3E28566725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28566725&rft_id=info:pmid/&rfr_iscdi=true |