Loading…

Hydrodynamic aspects of ejectors

The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2005-11, Vol.60 (22), p.6391-6402
Main Authors: Kandakure, M.T., Gaikar, V.G., Patwardhan, A.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363
cites cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363
container_end_page 6402
container_issue 22
container_start_page 6391
container_title Chemical engineering science
container_volume 60
creator Kandakure, M.T.
Gaikar, V.G.
Patwardhan, A.W.
description The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.
doi_str_mv 10.1016/j.ces.2005.04.055
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28566725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250905003210</els_id><sourcerecordid>28566725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</originalsourceid><addsrcrecordid>eNp9kEFLw0AQhRdRsFZ_gLdc9JY4O9lNUjxJUSsUvOh52exOYEOa1J1W6L93pQVvnmYG3pt58wlxK6GQIKuHvnDEBQLoAlQBWp-JmWzqMlcK9LmYAcAiRw2LS3HF3KexriXMRLY6-Dj5w2g3wWWWt-R2nE1dRn3qpsjX4qKzA9PNqc7F58vzx3KVr99f35ZP69yVutnlqmpbQFLed1hblDUuoLWlTEmUt5VvpMJF45ActgrbEqEtZQcNdk4pKqtyLu6Pe7dx-toT78wmsKNhsCNNezbY6KqqUSehPApdnJgjdWYbw8bGg5FgflmY3iQW5peFAWVSguS5Oy237OzQRTu6wH_GOuFoAJPu8aij9Ol3oGjYBRod-RATDuOn8M-VHwRiceM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28566725</pqid></control><display><type>article</type><title>Hydrodynamic aspects of ejectors</title><source>ScienceDirect Journals</source><creator>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</creator><creatorcontrib>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</creatorcontrib><description>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2005.04.055</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Chemical engineering ; Ejector ; Entrainment ; Exact sciences and technology ; Fluid mechanics ; Heat and mass transfer. Packings, plates ; Hydrodynamics ; Hydrodynamics of contact apparatus ; Momentum transfer ; Multiphase flow</subject><ispartof>Chemical engineering science, 2005-11, Vol.60 (22), p.6391-6402</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</citedby><cites>FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17007802$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kandakure, M.T.</creatorcontrib><creatorcontrib>Gaikar, V.G.</creatorcontrib><creatorcontrib>Patwardhan, A.W.</creatorcontrib><title>Hydrodynamic aspects of ejectors</title><title>Chemical engineering science</title><description>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Ejector</subject><subject>Entrainment</subject><subject>Exact sciences and technology</subject><subject>Fluid mechanics</subject><subject>Heat and mass transfer. Packings, plates</subject><subject>Hydrodynamics</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLw0AQhRdRsFZ_gLdc9JY4O9lNUjxJUSsUvOh52exOYEOa1J1W6L93pQVvnmYG3pt58wlxK6GQIKuHvnDEBQLoAlQBWp-JmWzqMlcK9LmYAcAiRw2LS3HF3KexriXMRLY6-Dj5w2g3wWWWt-R2nE1dRn3qpsjX4qKzA9PNqc7F58vzx3KVr99f35ZP69yVutnlqmpbQFLed1hblDUuoLWlTEmUt5VvpMJF45ActgrbEqEtZQcNdk4pKqtyLu6Pe7dx-toT78wmsKNhsCNNezbY6KqqUSehPApdnJgjdWYbw8bGg5FgflmY3iQW5peFAWVSguS5Oy237OzQRTu6wH_GOuFoAJPu8aij9Ol3oGjYBRod-RATDuOn8M-VHwRiceM</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Kandakure, M.T.</creator><creator>Gaikar, V.G.</creator><creator>Patwardhan, A.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20051101</creationdate><title>Hydrodynamic aspects of ejectors</title><author>Kandakure, M.T. ; Gaikar, V.G. ; Patwardhan, A.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Ejector</topic><topic>Entrainment</topic><topic>Exact sciences and technology</topic><topic>Fluid mechanics</topic><topic>Heat and mass transfer. Packings, plates</topic><topic>Hydrodynamics</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kandakure, M.T.</creatorcontrib><creatorcontrib>Gaikar, V.G.</creatorcontrib><creatorcontrib>Patwardhan, A.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kandakure, M.T.</au><au>Gaikar, V.G.</au><au>Patwardhan, A.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic aspects of ejectors</atitle><jtitle>Chemical engineering science</jtitle><date>2005-11-01</date><risdate>2005</risdate><volume>60</volume><issue>22</issue><spage>6391</spage><epage>6402</epage><pages>6391-6402</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>The use of ejectors as a gas–liquid contacting device has been reported to give higher mass transfer rates than conventional contactors. Computational fluid dynamics (CFD) modeling studies were undertaken to understand the hydrodynamic characteristics with reference to the ejector geometry. The CFD model also provides a basis for quantifying the effects of operating conditions on the ejector performance. CFD studies show that at low value of area ratio (ratio of throat area to nozzle area), due to the larger diameter of the water jet, the annular area available for air flow reduces, causing recirculation of the entrained air within the converging section of the ejector. On the other hand, for higher values of area ratio, due to smaller diameter of the water jet, the momentum transfer to the air decreases and all the entrained air cannot be forced through the throat. As a result, the net air flow rate going into the throat for both area ratios is small. Thus there is an optimum area ratio for the maximum air entrainment rate. The air entrainment rate correlates with pressure difference between the air entry and throat exit for a wide variety of ejector geometries and operating conditions. The overall head loss factor and the ejector efficiency can be predicted a priori.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2005.04.055</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2005-11, Vol.60 (22), p.6391-6402
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_28566725
source ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Ejector
Entrainment
Exact sciences and technology
Fluid mechanics
Heat and mass transfer. Packings, plates
Hydrodynamics
Hydrodynamics of contact apparatus
Momentum transfer
Multiphase flow
title Hydrodynamic aspects of ejectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20aspects%20of%20ejectors&rft.jtitle=Chemical%20engineering%20science&rft.au=Kandakure,%20M.T.&rft.date=2005-11-01&rft.volume=60&rft.issue=22&rft.spage=6391&rft.epage=6402&rft.pages=6391-6402&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2005.04.055&rft_dat=%3Cproquest_cross%3E28566725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-46bb02e4ddf27a217290ba310554da6d814298c2ec2b42b320b31f082fc44e363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28566725&rft_id=info:pmid/&rfr_iscdi=true