Loading…

Real-time frequency and harmonic evaluation using artificial neural networks

With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinea...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 1999-01, Vol.14 (1), p.52-59
Main Authors: Lai, L.L., Chan, W.L., Tse, C.T., So, A.T.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variations have become important. Because of limitations associated with conventional algorithms, particularly under supply-frequency drift and transient situations, a new approach based on nonlinear least-squares parameter estimation has been proposed as an alternative solution for high-accuracy evaluation. However, the computational demand of the algorithm is very high and it is more appropriate to use Hopfield type feedback neural networks for real-time harmonic evaluation. The proposed neural network implementation determines simultaneously the supply-frequency variation, the fundamental-amplitude/phase variation as well as the harmonics-amplitude/phase variation. The distinctive feature is that the supply-frequency variation is handled separately from the amplitude/phase variations, thus ensuring high computational speed and high convergence rate. Examples by computer simulation are used to demonstrate the effectiveness of the implementation. A set of data taken on site was used as a real application of the system.
ISSN:0885-8977
1937-4208
DOI:10.1109/61.736681