Loading…

Reactive wetting of rutile by liquid aluminium

Sessile drop wetting experiments of liquid Al on polycrystalline rutile (TiO2) were conducted in the 973.1273 K temperature range under a low total pressure (9.3 10.3 Pa, Ar) and a low oxygen partial pressure (Ŝ 1.33 10.7 Pa), as a function of temperature and time. A non-wetting (150., 973 K, t >...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2005-03, Vol.40 (5), p.1093-1100
Main Authors: AVRAHAM, S, KAPLAN, W. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sessile drop wetting experiments of liquid Al on polycrystalline rutile (TiO2) were conducted in the 973.1273 K temperature range under a low total pressure (9.3 10.3 Pa, Ar) and a low oxygen partial pressure (Ŝ 1.33 10.7 Pa), as a function of temperature and time. A non-wetting (150., 973 K, t >120 min.) to partial wetting (85., 1273 K, 50.60 min.) transition reflects reactive wetting characteristics. Microstructural investigations of the metal-ceramic interface shows that TiO2 is reduced by liquid Al, resulting in the formation of Al2O3. The steady-state contact angle at 1273 K of Al on α-Al2O3 and Al on rutile are very similar, and the role of Ti segregation is minimal. It appears that spreading of the Al drop on TiO2 is governed by the reduction reaction at the solid-liquid interface. The measured activation energy corresponds well to the activation energy for volume diffusion of Al, Ti and O in rutile and the volume diffusion of Al in polycrystalline α-Al2O3.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-005-6922-4