Loading…
Accelerated Hybridization Chain Reaction Kinetics Using Poly DNA Tetrahedrons and Its Application in Detection of Aflatoxin B1
Traditional hybridization chain reaction (HCR) as a popular isothermal amplification technique shows some inevitable disadvantages in bioanalysis due to its relatively slow kinetics, which could be markedly promoted when the HCR initiator occurs under tension. Herein, a poly DNA tetrahedrons (pTDNs)...
Saved in:
Published in: | ACS applied materials & interfaces 2023-09, Vol.15 (35), p.41237-41246 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Traditional hybridization chain reaction (HCR) as a popular isothermal amplification technique shows some inevitable disadvantages in bioanalysis due to its relatively slow kinetics, which could be markedly promoted when the HCR initiator occurs under tension. Herein, a poly DNA tetrahedrons (pTDNs)-mediated HCR was successfully constructed to make its initiator in a stretched state by long-range electrostatic forces owing to the superimposed electrostatic interactions derived from the synthesized pTDNs, and it was hypothesized that it could remarkably enhance HCR performance, which was testified by theoretical simulations and experimental studies. Consequently, pTDNs-mediated HCR was applied to develop a novel immunoassay for rapid and sensitive detection of aflatoxin B1 as a proof-of-concept, and its signal amplification was attributed to the increased G4 DNAzyme that loaded on the second antibody. Our work paves a promising way using simple DNA frameworks alone to heighten HCR kinetics for reaction speed improvement and signal amplification in bioanalysis. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.3c05506 |