Loading…
Proteomic analysis of Cryptostegia grandiflora latex, purification, characterization, and biological activity of two osmotin isoforms
Although latex fluids are found in >20,000 plant species, the biochemical composition and biological function of their proteins are still poorly explored. Thus, this work aimed to conduct a proteomic analysis of Cryptostegia grandiflora latex (CgLP) for subsequent purification and characterizatio...
Saved in:
Published in: | International journal of biological macromolecules 2023-12, Vol.252, p.126529-126529, Article 126529 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although latex fluids are found in >20,000 plant species, the biochemical composition and biological function of their proteins are still poorly explored. Thus, this work aimed to conduct a proteomic analysis of Cryptostegia grandiflora latex (CgLP) for subsequent purification and characterization of an antifungal protein. After 2D-SDS-PAGE and mass spectrometry, 27 proteins were identified in CgLP, including a polygalacturonase inhibitor, cysteine peptidases, pathogenesis-related proteins (PR-4), and osmotins. Then, two osmotin isoforms (CgOsm) were purified, and a unique N-terminal sequence was determined (1ATFDIRSNCPYTVWAAAVPGGGRRLDRGQTWTINVAPGTA40). The PCR products revealed a cDNA sequence of 609 nucleotides for CgOsm, which encoded a polypeptide with 203 amino acid residues. The structure of CgOsm has features of typical osmotin or thaumatin-like proteins (TLPs), such as 16 conserved Cys residues, REDDD and FF motifs, an acidic cleft, and three main domains. Atomic force microscopy (AFM) and bioinformatics suggested that CgOsm is associated with three chain units. This result was interesting since the literature describes osmotins and TLPs as monomers. AFM also showed that Fusarium falciforme spores treated with CgOsm were drastically damaged. Therefore, it is speculated that CgOsm forms pores in the membrane of these cells, causing the leakage of cytoplasmic content. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.126529 |