Loading…
STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions
We consider the problem of synthesizing multiple-valued logic functions by neural networks. A genetic algorithm (GA) which finds the longest strip in V/spl sube/K/sup n/ is described. A strip contains points located between two parallel hyperplanes. Repeated application of GA partitions the space V...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2001-03, Vol.12 (2), p.212-227 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3 |
container_end_page | 227 |
container_issue | 2 |
container_start_page | 212 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 12 |
creator | Ngom, A. Stojmenovic, I. Milutinovic, V. |
description | We consider the problem of synthesizing multiple-valued logic functions by neural networks. A genetic algorithm (GA) which finds the longest strip in V/spl sube/K/sup n/ is described. A strip contains points located between two parallel hyperplanes. Repeated application of GA partitions the space V into certain number of strips, each of them corresponding to a hidden unit. We construct two neural networks based on these hidden units and show that they correctly compute the given but arbitrary multiple-valued function. Preliminary experimental results are presented and discussed. |
doi_str_mv | 10.1109/72.914519 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28578673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>914519</ieee_id><sourcerecordid>26961136</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgim1XD149SPCg9JD65ntylGK1UFC03oQhmUm2UzOTbTJj6X9vll1a8GAhkEB-73N4H4ReUTihFMwHzU4MFZKaJ-iQGkEJgOFP6xuEJIYxfYCOSrkGqAjUc3RAGyYE1-YQ_fpx-f38GybY4jLnYUOcLb7Hk1-yjWTy823Kv_E6p9v5Ctu4TnmYr0YcUsbR2zwN0xqPS5yHTfTkj41LHQ7L1M1DmsoL9CzYWPzL_b1CP88-XZ5-IRdfP5-ffrwgnWiamTjlgAUpIei-Y5Q2ViinOYAC2fMgFJPedQ03vRahZ8qDDtoxaV0HMgTHV-j9LneT083iy9yOQ-l8jHbyaSltXY4SwI14VGrOheSq2cp3_5WskbpR1T8KlVGUclXh23_gdVryVBfTGgbbrHpW6HiHupxKyT60mzyMNt-1FNpt2a1m7a7sat_sAxc3-v5B7tut4PUODN77--_99F-pjqr2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867367</pqid></control><display><type>article</type><title>STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Ngom, A. ; Stojmenovic, I. ; Milutinovic, V.</creator><creatorcontrib>Ngom, A. ; Stojmenovic, I. ; Milutinovic, V.</creatorcontrib><description>We consider the problem of synthesizing multiple-valued logic functions by neural networks. A genetic algorithm (GA) which finds the longest strip in V/spl sube/K/sup n/ is described. A strip contains points located between two parallel hyperplanes. Repeated application of GA partitions the space V into certain number of strips, each of them corresponding to a hidden unit. We construct two neural networks based on these hidden units and show that they correctly compute the given but arbitrary multiple-valued function. Preliminary experimental results are presented and discussed.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.914519</identifier><identifier>PMID: 18244379</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algebra ; Algorithms ; Computer science ; Genetic algorithms ; Hyperplanes ; Learning ; Logic functions ; Mathematical analysis ; Mathematical models ; Multi-layer neural network ; Network synthesis ; Neural networks ; Neurons ; Strip ; Strips ; Transfer functions</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-03, Vol.12 (2), p.212-227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3</citedby><cites>FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/914519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Stojmenovic, I.</creatorcontrib><creatorcontrib>Milutinovic, V.</creatorcontrib><title>STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>We consider the problem of synthesizing multiple-valued logic functions by neural networks. A genetic algorithm (GA) which finds the longest strip in V/spl sube/K/sup n/ is described. A strip contains points located between two parallel hyperplanes. Repeated application of GA partitions the space V into certain number of strips, each of them corresponding to a hidden unit. We construct two neural networks based on these hidden units and show that they correctly compute the given but arbitrary multiple-valued function. Preliminary experimental results are presented and discussed.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Hyperplanes</subject><subject>Learning</subject><subject>Logic functions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multi-layer neural network</subject><subject>Network synthesis</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Strip</subject><subject>Strips</subject><subject>Transfer functions</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0c1rFDEYBvAgim1XD149SPCg9JD65ntylGK1UFC03oQhmUm2UzOTbTJj6X9vll1a8GAhkEB-73N4H4ReUTihFMwHzU4MFZKaJ-iQGkEJgOFP6xuEJIYxfYCOSrkGqAjUc3RAGyYE1-YQ_fpx-f38GybY4jLnYUOcLb7Hk1-yjWTy823Kv_E6p9v5Ctu4TnmYr0YcUsbR2zwN0xqPS5yHTfTkj41LHQ7L1M1DmsoL9CzYWPzL_b1CP88-XZ5-IRdfP5-ffrwgnWiamTjlgAUpIei-Y5Q2ViinOYAC2fMgFJPedQ03vRahZ8qDDtoxaV0HMgTHV-j9LneT083iy9yOQ-l8jHbyaSltXY4SwI14VGrOheSq2cp3_5WskbpR1T8KlVGUclXh23_gdVryVBfTGgbbrHpW6HiHupxKyT60mzyMNt-1FNpt2a1m7a7sat_sAxc3-v5B7tut4PUODN77--_99F-pjqr2</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Ngom, A.</creator><creator>Stojmenovic, I.</creator><creator>Milutinovic, V.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20010301</creationdate><title>STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions</title><author>Ngom, A. ; Stojmenovic, I. ; Milutinovic, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Hyperplanes</topic><topic>Learning</topic><topic>Logic functions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multi-layer neural network</topic><topic>Network synthesis</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Strip</topic><topic>Strips</topic><topic>Transfer functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Stojmenovic, I.</creatorcontrib><creatorcontrib>Milutinovic, V.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ngom, A.</au><au>Stojmenovic, I.</au><au>Milutinovic, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-03-01</date><risdate>2001</risdate><volume>12</volume><issue>2</issue><spage>212</spage><epage>227</epage><pages>212-227</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>We consider the problem of synthesizing multiple-valued logic functions by neural networks. A genetic algorithm (GA) which finds the longest strip in V/spl sube/K/sup n/ is described. A strip contains points located between two parallel hyperplanes. Repeated application of GA partitions the space V into certain number of strips, each of them corresponding to a hidden unit. We construct two neural networks based on these hidden units and show that they correctly compute the given but arbitrary multiple-valued function. Preliminary experimental results are presented and discussed.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18244379</pmid><doi>10.1109/72.914519</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1045-9227 |
ispartof | IEEE transaction on neural networks and learning systems, 2001-03, Vol.12 (2), p.212-227 |
issn | 1045-9227 2162-237X 1941-0093 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_28578673 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algebra Algorithms Computer science Genetic algorithms Hyperplanes Learning Logic functions Mathematical analysis Mathematical models Multi-layer neural network Network synthesis Neural networks Neurons Strip Strips Transfer functions |
title | STRIP - a strip-based neural-network growth algorithm for learning multiple-valued functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A36%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STRIP%20-%20a%20strip-based%20neural-network%20growth%20algorithm%20for%20learning%20multiple-valued%20functions&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Ngom,%20A.&rft.date=2001-03-01&rft.volume=12&rft.issue=2&rft.spage=212&rft.epage=227&rft.pages=212-227&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.914519&rft_dat=%3Cproquest_ieee_%3E26961136%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-b6b02f550f7dc2118a46b7300605d3f4625ebc839d74fd26e07f7b25abc05ffb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920867367&rft_id=info:pmid/18244379&rft_ieee_id=914519&rfr_iscdi=true |