Loading…

A slow wave free-electron laser

A simple calculation of a free-electron laser in the Compton regime that uses a dielectric-lined waveguide is presented. The introduction of a dielectric lining in a free-electron laser considerably reduces the requirements on beam voltage for generating a given frequency omega /sub 1/=k/sub 0/c/(1...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on plasma science 1989-08, Vol.17 (4), p.583-587
Main Authors: Tripathi, V.K., Liu, C.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593
cites cdi_FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593
container_end_page 587
container_issue 4
container_start_page 583
container_title IEEE transactions on plasma science
container_volume 17
creator Tripathi, V.K.
Liu, C.S.
description A simple calculation of a free-electron laser in the Compton regime that uses a dielectric-lined waveguide is presented. The introduction of a dielectric lining in a free-electron laser considerably reduces the requirements on beam voltage for generating a given frequency omega /sub 1/=k/sub 0/c/(1 - v/sub b/ eta /c), where k/sub 0/ is the wiggler wave period eta is the effective index of refraction (1< eta < square root epsilon ) and epsilon is the permittivity. The system supports electromagnetic waves whose Poynting flux is largely concentrated in the dielectric; hence the electron beam is required to propagate close to the dielectric lining. The mode structure and dispersion behavior of the guiding system without the beam are discussed. a thin annular beam is introduced, and a perturbation theory is used to obtain the frequency and growth rate of radiation.< >
doi_str_mv 10.1109/27.31196
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28580323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>31196</ieee_id><sourcerecordid>25453186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593</originalsourceid><addsrcrecordid>eNqN0E1LAzEQBuAgCtYqePXkIihetmaSTbJzLMUvKHjRc0jjBFe2uzXZWvz3rm7Ro54GZh5ehpexY-ATAI5XwkwkAOodNgKUmKM0apeNOEeZyxLkPjtI6ZVzKBQXI3Y6zVLdbrKNe6csRKKcavJdbJusdoniIdsLrk50tJ1j9nRz_Ti7y-cPt_ez6Tz3EmWXOyAdXCgdGkEeUVDwfOF4oQ3SQqLQvl8UAYwJhTJQIhQ6EH8OpJVUKMfsbMhtU1fZ5KuO_Itvm6Z_xiolgAP06GJAq9i-rSl1dlklT3XtGmrXyYpSlVwK-TdUhdIczb-ghFL38HKAPrYpRQp2Faulix8WuP0q3gpjv4vv6fk20yXv6hBd46v061Er5JL37mRwFRH9nIeMT3R6hso</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25453186</pqid></control><display><type>article</type><title>A slow wave free-electron laser</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Tripathi, V.K. ; Liu, C.S.</creator><creatorcontrib>Tripathi, V.K. ; Liu, C.S.</creatorcontrib><description>A simple calculation of a free-electron laser in the Compton regime that uses a dielectric-lined waveguide is presented. The introduction of a dielectric lining in a free-electron laser considerably reduces the requirements on beam voltage for generating a given frequency omega /sub 1/=k/sub 0/c/(1 - v/sub b/ eta /c), where k/sub 0/ is the wiggler wave period eta is the effective index of refraction (1&lt; eta &lt; square root epsilon ) and epsilon is the permittivity. The system supports electromagnetic waves whose Poynting flux is largely concentrated in the dielectric; hence the electron beam is required to propagate close to the dielectric lining. The mode structure and dispersion behavior of the guiding system without the beam are discussed. a thin annular beam is introduced, and a perturbation theory is used to obtain the frequency and growth rate of radiation.&lt; &gt;</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/27.31196</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>420300 - Engineering- Lasers- (-1989) ; BEAM OPTICS ; DIELECTRIC MATERIALS ; Dielectrics ; ELECTROMAGNETIC RADIATION ; Electromagnetic refraction ; Electromagnetic waveguides ; Electromagnetism; electron and ion optics ; ENGINEERING ; Exact sciences and technology ; FREE ELECTRON LASERS ; Frequency ; FREQUENCY MODULATION ; Fundamental areas of phenomenology (including applications) ; Laser beams ; LASER RADIATION ; LASERS ; MATERIALS ; MODULATION ; Physics ; PLASMA WAVES ; Radiation by moving charges ; RADIATIONS ; Time of arrival estimation ; Undulators ; Voltage ; Waveguide lasers</subject><ispartof>IEEE transactions on plasma science, 1989-08, Vol.17 (4), p.583-587</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593</citedby><cites>FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/31196$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19659030$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/5521011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tripathi, V.K.</creatorcontrib><creatorcontrib>Liu, C.S.</creatorcontrib><title>A slow wave free-electron laser</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>A simple calculation of a free-electron laser in the Compton regime that uses a dielectric-lined waveguide is presented. The introduction of a dielectric lining in a free-electron laser considerably reduces the requirements on beam voltage for generating a given frequency omega /sub 1/=k/sub 0/c/(1 - v/sub b/ eta /c), where k/sub 0/ is the wiggler wave period eta is the effective index of refraction (1&lt; eta &lt; square root epsilon ) and epsilon is the permittivity. The system supports electromagnetic waves whose Poynting flux is largely concentrated in the dielectric; hence the electron beam is required to propagate close to the dielectric lining. The mode structure and dispersion behavior of the guiding system without the beam are discussed. a thin annular beam is introduced, and a perturbation theory is used to obtain the frequency and growth rate of radiation.&lt; &gt;</description><subject>420300 - Engineering- Lasers- (-1989)</subject><subject>BEAM OPTICS</subject><subject>DIELECTRIC MATERIALS</subject><subject>Dielectrics</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>Electromagnetic refraction</subject><subject>Electromagnetic waveguides</subject><subject>Electromagnetism; electron and ion optics</subject><subject>ENGINEERING</subject><subject>Exact sciences and technology</subject><subject>FREE ELECTRON LASERS</subject><subject>Frequency</subject><subject>FREQUENCY MODULATION</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laser beams</subject><subject>LASER RADIATION</subject><subject>LASERS</subject><subject>MATERIALS</subject><subject>MODULATION</subject><subject>Physics</subject><subject>PLASMA WAVES</subject><subject>Radiation by moving charges</subject><subject>RADIATIONS</subject><subject>Time of arrival estimation</subject><subject>Undulators</subject><subject>Voltage</subject><subject>Waveguide lasers</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNqN0E1LAzEQBuAgCtYqePXkIihetmaSTbJzLMUvKHjRc0jjBFe2uzXZWvz3rm7Ro54GZh5ehpexY-ATAI5XwkwkAOodNgKUmKM0apeNOEeZyxLkPjtI6ZVzKBQXI3Y6zVLdbrKNe6csRKKcavJdbJusdoniIdsLrk50tJ1j9nRz_Ti7y-cPt_ez6Tz3EmWXOyAdXCgdGkEeUVDwfOF4oQ3SQqLQvl8UAYwJhTJQIhQ6EH8OpJVUKMfsbMhtU1fZ5KuO_Itvm6Z_xiolgAP06GJAq9i-rSl1dlklT3XtGmrXyYpSlVwK-TdUhdIczb-ghFL38HKAPrYpRQp2Faulix8WuP0q3gpjv4vv6fk20yXv6hBd46v061Er5JL37mRwFRH9nIeMT3R6hso</recordid><startdate>19890801</startdate><enddate>19890801</enddate><creator>Tripathi, V.K.</creator><creator>Liu, C.S.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>H8D</scope><scope>7U5</scope><scope>OTOTI</scope></search><sort><creationdate>19890801</creationdate><title>A slow wave free-electron laser</title><author>Tripathi, V.K. ; Liu, C.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>420300 - Engineering- Lasers- (-1989)</topic><topic>BEAM OPTICS</topic><topic>DIELECTRIC MATERIALS</topic><topic>Dielectrics</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>Electromagnetic refraction</topic><topic>Electromagnetic waveguides</topic><topic>Electromagnetism; electron and ion optics</topic><topic>ENGINEERING</topic><topic>Exact sciences and technology</topic><topic>FREE ELECTRON LASERS</topic><topic>Frequency</topic><topic>FREQUENCY MODULATION</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laser beams</topic><topic>LASER RADIATION</topic><topic>LASERS</topic><topic>MATERIALS</topic><topic>MODULATION</topic><topic>Physics</topic><topic>PLASMA WAVES</topic><topic>Radiation by moving charges</topic><topic>RADIATIONS</topic><topic>Time of arrival estimation</topic><topic>Undulators</topic><topic>Voltage</topic><topic>Waveguide lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tripathi, V.K.</creatorcontrib><creatorcontrib>Liu, C.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aerospace Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tripathi, V.K.</au><au>Liu, C.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A slow wave free-electron laser</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>1989-08-01</date><risdate>1989</risdate><volume>17</volume><issue>4</issue><spage>583</spage><epage>587</epage><pages>583-587</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>A simple calculation of a free-electron laser in the Compton regime that uses a dielectric-lined waveguide is presented. The introduction of a dielectric lining in a free-electron laser considerably reduces the requirements on beam voltage for generating a given frequency omega /sub 1/=k/sub 0/c/(1 - v/sub b/ eta /c), where k/sub 0/ is the wiggler wave period eta is the effective index of refraction (1&lt; eta &lt; square root epsilon ) and epsilon is the permittivity. The system supports electromagnetic waves whose Poynting flux is largely concentrated in the dielectric; hence the electron beam is required to propagate close to the dielectric lining. The mode structure and dispersion behavior of the guiding system without the beam are discussed. a thin annular beam is introduced, and a perturbation theory is used to obtain the frequency and growth rate of radiation.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/27.31196</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 1989-08, Vol.17 (4), p.583-587
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_miscellaneous_28580323
source IEEE Electronic Library (IEL) Journals
subjects 420300 - Engineering- Lasers- (-1989)
BEAM OPTICS
DIELECTRIC MATERIALS
Dielectrics
ELECTROMAGNETIC RADIATION
Electromagnetic refraction
Electromagnetic waveguides
Electromagnetism
electron and ion optics
ENGINEERING
Exact sciences and technology
FREE ELECTRON LASERS
Frequency
FREQUENCY MODULATION
Fundamental areas of phenomenology (including applications)
Laser beams
LASER RADIATION
LASERS
MATERIALS
MODULATION
Physics
PLASMA WAVES
Radiation by moving charges
RADIATIONS
Time of arrival estimation
Undulators
Voltage
Waveguide lasers
title A slow wave free-electron laser
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A25%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20slow%20wave%20free-electron%20laser&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Tripathi,%20V.K.&rft.date=1989-08-01&rft.volume=17&rft.issue=4&rft.spage=583&rft.epage=587&rft.pages=583-587&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/27.31196&rft_dat=%3Cproquest_osti_%3E25453186%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-a1e6faf8a972ec992efc0ba04679eb3926cfc04f177f457189146fe0dfe653593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25453186&rft_id=info:pmid/&rft_ieee_id=31196&rfr_iscdi=true