Loading…

Adsorption of antimicrobial peptide onto chitosan-coated iron oxide nanoparticles fosters oxidative stress triggering bacterial cell death

In the prevailing environmental status quo, bacterial resistance has made antibiotics and antimicrobial peptides (AMPs) ineffective, imparting a serious threat and putting a much greater financial burden on the biomedical and food industries. For this reason, the present study investigates the poten...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2023-08, Vol.13 (36), p.25497-2557
Main Authors: Leena Panigrahi, Lipsa, Shekhar, Shashank, Sahoo, Banishree, Arakha, Manoranjan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the prevailing environmental status quo, bacterial resistance has made antibiotics and antimicrobial peptides (AMPs) ineffective, imparting a serious threat and putting a much greater financial burden on the biomedical and food industries. For this reason, the present study investigates the potential of iron oxide nanoparticles (IONPs) coated with chitosan (CS-IONP) as a platform for augmenting the antimicrobial activity of antimicrobial peptides like nisin. Hence, the nisin is allowed to be adsorbed onto chitosan-coated IONPs to formulate nisin-loaded CS-IONP nanoconjugates. The nanoconjugates were characterized by various optical techniques, such as XRD, FTIR, SEM, zeta and DLS. Remarkably, lower concentrations of N-CS-IONP nanoconjugate exhibited significant and broad-spectrum antibacterial potency compared to bare IONPs and nisin against both Gram-positive and Gram-negative bacteria. Biofilm production was also found to be drastically reduced in the presence of nanoconjugates. Further investigation established a relationship between an increase in antibacterial activity and the enhanced generation of reactive oxygen species (ROS). Oxidative stress exhibited due to enhanced ROS generation is a conclusive reason for the rupturing of bacterial membranes and leakage of cytoplasmic contents, eventually leading to the death of the bacteria. Thus, the current study emphasizes the formulation of a novel antimicrobial agent which exploits magnetic nanoparticles modulated with chitosan for enhanced remediation of resistant bacteria due to oxidative stress imparted by the nanoconjugates upon interaction with the bacteria, leading to cell death. A facile approach towards the formulation of antimicrobial peptide adsorbed magnetic nano-conjugates with oxidative stress mediated bacterial cell death.
ISSN:2046-2069
2046-2069
DOI:10.1039/d3ra04070d