Loading…
Simultaneous stabilization of multimachine power systems via genetic algorithms
This paper demonstrates the use of genetic algorithms for the simultaneous stabilization of multimachine power systems over a wide range of operating conditions via single-setting power system stabilizers. The power system operating at various conditions is treated as a finite set of plants. The pro...
Saved in:
Published in: | IEEE transactions on power systems 1999-11, Vol.14 (4), p.1428-1439 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper demonstrates the use of genetic algorithms for the simultaneous stabilization of multimachine power systems over a wide range of operating conditions via single-setting power system stabilizers. The power system operating at various conditions is treated as a finite set of plants. The problem of selecting the parameters of power system stabilizers which simultaneously stabilize this set of plants is converted to a simple optimization problem which is solved by a genetic algorithm with an eigenvalue-based objective function. Two objective functions are presented, allowing the selection of the stabilizer parameters to shift some of the closed-loop eigenvalues to the left-hand side of a vertical line in the complex s-plane, or to a wedge-shape sector in the complex s-plane. The effectiveness of the suggested technique in damping local and inter-area modes of oscillations in multimachine power systems is verified through eigenvalue analysis and simulation results. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/59.801907 |