Loading…

Novel meshless method for solving the potential problems with arbitrary domain

In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the potential problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using the desingularization technique to regularize the singularity a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2005-10, Vol.209 (1), p.290-321
Main Authors: Young, D.L., Chen, K.H., Lee, C.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63
cites cdi_FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63
container_end_page 321
container_issue 1
container_start_page 290
container_title Journal of computational physics
container_volume 209
creator Young, D.L.
Chen, K.H.
Lee, C.W.
description In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the potential problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using the desingularization technique to regularize the singularity and hypersingularity of the kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. The main difficulty of the coincidence of the source and collocation points then disappears. By employing the two-point function, the off-diagonal coefficients of influence matrices are easily obtained. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the results of exact solution, conventional MFS and BEM for the Dirichlet, Neumann and mix-type boundary conditions (BCs) of interior and exterior problems with simple and complicated boundaries. Good agreements with exact solutions are observed.
doi_str_mv 10.1016/j.jcp.2005.03.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28588632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105001294</els_id><sourcerecordid>28588632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63</originalsourceid><addsrcrecordid>eNqFkU2LFDEQhhtRcFz9Ad5yUbx0W_nofOBJlvUDlvWi55BOVzsZ0p0xyY74780wC97WUxXF81YV79t1rykMFKh8fxgO_jgwgHEAPgCoJ92OgoGeKSqfdjsARntjDH3evSjlAAB6FHrX3d2lE0ayYtlHLKU1dZ9msqRMSoqnsP0kdY_kmCpuNbhIjjlNEddCfoe6Jy5PoWaX_5A5rS5sL7tni4sFXz3Uq-7Hp5vv11_622-fv15_vO29kKr2s_Aj40os0siJC-8EZVKNTrNJIihB6ey55LhonMyCkgnO1AxOA20jJ_lV9_ayt73z6x5LtWsoHmN0G6b7YpketZacNfDdoyCVShmhR6P-j4JmVFEtzyi9oD6nUjIu9pjD2mxokD3nYQ-25WHPeVjgtuXRNG8e1rviXVyy23wo_4RSG8aBN-7DhcPm3ylgtsUH3DzOIaOvdk7hkSt_ARQIn00</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082171867</pqid></control><display><type>article</type><title>Novel meshless method for solving the potential problems with arbitrary domain</title><source>Elsevier</source><creator>Young, D.L. ; Chen, K.H. ; Lee, C.W.</creator><creatorcontrib>Young, D.L. ; Chen, K.H. ; Lee, C.W.</creatorcontrib><description>In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the potential problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using the desingularization technique to regularize the singularity and hypersingularity of the kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. The main difficulty of the coincidence of the source and collocation points then disappears. By employing the two-point function, the off-diagonal coefficients of influence matrices are easily obtained. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the results of exact solution, conventional MFS and BEM for the Dirichlet, Neumann and mix-type boundary conditions (BCs) of interior and exterior problems with simple and complicated boundaries. Good agreements with exact solutions are observed.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.03.007</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Boundaries ; Circulants ; Computational techniques ; Conventional MFS ; Desingularization technique ; Dirichlet problem ; Double layer potential ; Exact sciences and technology ; Exact solutions ; Finite element method ; Hypersingularity ; Kernel function ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Matrices ; Meshless method ; Meshless methods ; Mixed-type BC ; Non-singular ; Physics ; Singular fundamental solution ; Singularity</subject><ispartof>Journal of computational physics, 2005-10, Vol.209 (1), p.290-321</ispartof><rights>2005 Elsevier Inc.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63</citedby><cites>FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16892303$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Chen, K.H.</creatorcontrib><creatorcontrib>Lee, C.W.</creatorcontrib><title>Novel meshless method for solving the potential problems with arbitrary domain</title><title>Journal of computational physics</title><description>In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the potential problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using the desingularization technique to regularize the singularity and hypersingularity of the kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. The main difficulty of the coincidence of the source and collocation points then disappears. By employing the two-point function, the off-diagonal coefficients of influence matrices are easily obtained. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the results of exact solution, conventional MFS and BEM for the Dirichlet, Neumann and mix-type boundary conditions (BCs) of interior and exterior problems with simple and complicated boundaries. Good agreements with exact solutions are observed.</description><subject>Boundaries</subject><subject>Circulants</subject><subject>Computational techniques</subject><subject>Conventional MFS</subject><subject>Desingularization technique</subject><subject>Dirichlet problem</subject><subject>Double layer potential</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Finite element method</subject><subject>Hypersingularity</subject><subject>Kernel function</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Matrices</subject><subject>Meshless method</subject><subject>Meshless methods</subject><subject>Mixed-type BC</subject><subject>Non-singular</subject><subject>Physics</subject><subject>Singular fundamental solution</subject><subject>Singularity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkU2LFDEQhhtRcFz9Ad5yUbx0W_nofOBJlvUDlvWi55BOVzsZ0p0xyY74780wC97WUxXF81YV79t1rykMFKh8fxgO_jgwgHEAPgCoJ92OgoGeKSqfdjsARntjDH3evSjlAAB6FHrX3d2lE0ayYtlHLKU1dZ9msqRMSoqnsP0kdY_kmCpuNbhIjjlNEddCfoe6Jy5PoWaX_5A5rS5sL7tni4sFXz3Uq-7Hp5vv11_622-fv15_vO29kKr2s_Aj40os0siJC-8EZVKNTrNJIihB6ey55LhonMyCkgnO1AxOA20jJ_lV9_ayt73z6x5LtWsoHmN0G6b7YpketZacNfDdoyCVShmhR6P-j4JmVFEtzyi9oD6nUjIu9pjD2mxokD3nYQ-25WHPeVjgtuXRNG8e1rviXVyy23wo_4RSG8aBN-7DhcPm3ylgtsUH3DzOIaOvdk7hkSt_ARQIn00</recordid><startdate>20051010</startdate><enddate>20051010</enddate><creator>Young, D.L.</creator><creator>Chen, K.H.</creator><creator>Lee, C.W.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope></search><sort><creationdate>20051010</creationdate><title>Novel meshless method for solving the potential problems with arbitrary domain</title><author>Young, D.L. ; Chen, K.H. ; Lee, C.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Boundaries</topic><topic>Circulants</topic><topic>Computational techniques</topic><topic>Conventional MFS</topic><topic>Desingularization technique</topic><topic>Dirichlet problem</topic><topic>Double layer potential</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Finite element method</topic><topic>Hypersingularity</topic><topic>Kernel function</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Matrices</topic><topic>Meshless method</topic><topic>Meshless methods</topic><topic>Mixed-type BC</topic><topic>Non-singular</topic><topic>Physics</topic><topic>Singular fundamental solution</topic><topic>Singularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, D.L.</creatorcontrib><creatorcontrib>Chen, K.H.</creatorcontrib><creatorcontrib>Lee, C.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, D.L.</au><au>Chen, K.H.</au><au>Lee, C.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel meshless method for solving the potential problems with arbitrary domain</atitle><jtitle>Journal of computational physics</jtitle><date>2005-10-10</date><risdate>2005</risdate><volume>209</volume><issue>1</issue><spage>290</spage><epage>321</epage><pages>290-321</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In this article, a non-singular and boundary-type meshless method in two dimensions is developed to solve the potential problems. The solution is represented by a distribution of the kernel functions of double layer potentials. By using the desingularization technique to regularize the singularity and hypersingularity of the kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. The main difficulty of the coincidence of the source and collocation points then disappears. By employing the two-point function, the off-diagonal coefficients of influence matrices are easily obtained. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the results of exact solution, conventional MFS and BEM for the Dirichlet, Neumann and mix-type boundary conditions (BCs) of interior and exterior problems with simple and complicated boundaries. Good agreements with exact solutions are observed.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.03.007</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2005-10, Vol.209 (1), p.290-321
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_28588632
source Elsevier
subjects Boundaries
Circulants
Computational techniques
Conventional MFS
Desingularization technique
Dirichlet problem
Double layer potential
Exact sciences and technology
Exact solutions
Finite element method
Hypersingularity
Kernel function
Mathematical analysis
Mathematical methods in physics
Mathematical models
Matrices
Meshless method
Meshless methods
Mixed-type BC
Non-singular
Physics
Singular fundamental solution
Singularity
title Novel meshless method for solving the potential problems with arbitrary domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20meshless%20method%20for%20solving%20the%20potential%20problems%20with%20arbitrary%20domain&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Young,%20D.L.&rft.date=2005-10-10&rft.volume=209&rft.issue=1&rft.spage=290&rft.epage=321&rft.pages=290-321&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.03.007&rft_dat=%3Cproquest_cross%3E28588632%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-d4c52374f696b34ca412675a82b6e07411dc363ef8eb9fe624327d0a801f8ea63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082171867&rft_id=info:pmid/&rfr_iscdi=true