Loading…

Maternal age and gonadotrophin elevation cooperatively decrease viable ovulated oocytes and increase ootoxicity, chromosome-, and spindle-misalignments: ‘2-Hit’ and ‘FSH-OoToxicity’ mechanisms as new reproductive aging hypotheses

Abstract While there is consensus that advanced maternal age (AMA) reduces oocyte yield and quality, the notion that high FSH reduces oocyte quality and causes aneuploidy remains controversial, perhaps due to difficulties controlling the confounding variables of age and FSH levels. Here, contributio...

Full description

Saved in:
Bibliographic Details
Published in:Molecular human reproduction 2023-09, Vol.29 (10)
Main Authors: Bernstein, Lori R, Mackenzie, Amelia C L, Durkin, Keith, Kraemer, Duane C, Chaffin, Charles L, Merchenthaler, Istvan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract While there is consensus that advanced maternal age (AMA) reduces oocyte yield and quality, the notion that high FSH reduces oocyte quality and causes aneuploidy remains controversial, perhaps due to difficulties controlling the confounding variables of age and FSH levels. Here, contributions of age and gonadotrophin elevation were separately controlled using a mouse model of human female reproductive aging. Ovulated oocytes were collected from young and midlife mice after 0-, 2.6-, or 17-day treatment with the FSH analog equine chorionic gonadotrophin (eCG), to model both exogenous FSH elevation within a single treatment cycle (as in controlled ovarian stimulation (COS)), and chronic endogenous FSH elevation during multiple cycles (as in diminished ovarian reserve). After 17-day eCG, fewer total oocytes/mouse are ovulated in midlife than young mice, and a precipitous decline in viable oocytes/mouse is observed in midlife but not young mice throughout eCG treatment. eCG is potently ootoxic to ovulatory oocytes and strongly induces chromosome- and spindle-misalignments within 2.6 days of eCG in midlife, but only after 17 days in young mice. These data indicate that AMA increases susceptibility to multiple adverse effects of elevated FSH activity in ovulated oocytes, including declines in total and viable oocytes/mouse, and induction of ootoxicity and aneuploidy. Two hypotheses are proposed for underlying causes of infertility in women. The FSH OOToxicity Hypothesis (‘FOOT Hypothesis’) posits that high FSH is ootoxic to ovulatory oocytes and that FSH ootoxicity is a root cause of low pregnancy success rates in naturally cycling women with high FSH and IUI patients undergoing COS. The ‘2-Hit Hypothesis’ posits that AMA increases susceptibility to FSH-induced ootoxicity and aneuploidy.
ISSN:1360-9947
1460-2407
1460-2407
DOI:10.1093/molehr/gaad030