Loading…
Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation
A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established fo...
Saved in:
Published in: | Journal of computational and applied mathematics 2005-02, Vol.174 (1), p.101-117 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443 |
container_end_page | 117 |
container_issue | 1 |
container_start_page | 101 |
container_title | Journal of computational and applied mathematics |
container_volume | 174 |
creator | Danumjaya, P. Pani, Amiya K. |
description | A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library. |
doi_str_mv | 10.1016/j.cam.2004.04.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28593476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042704001748</els_id><sourcerecordid>28593476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</originalsourceid><addsrcrecordid>eNp9kM9q3DAQxkVJoZu0D9CbLu3N25GsPzY5hdA0oYFcWuhNyONxV4tsbSRvaG55h75hn6TebqC3wAcDw-_7hvkYey9gLUCYT9s1-nEtAdT6IJCv2Eo0tq2Etc0JW0FtbQVK2jfstJQtAJhWqBX7cZfnTfqZJh857ruAvOximIhjijGhn0Oa-EgL0_MhZT5viNOvmaaeen4Vyobyn6ffX1Mcl5CcHjjd7_-Z3rLXg4-F3j3PM_b96vO3y-vq9u7LzeXFbYW1NnNlUDfQeiOlbuWgO2WMr_tWDw3gsrUdedXLDoRQgiRo2VloUKOs6xZBqfqMfTzm7nK631OZ3RgKUox-orQvTja6rZU1CyiOIOZUSqbB7XIYfX50AtyhQ7d1S4fu0KE7COTi-fAc7gv6OGQ_YSj_jUYaq6VeuPMjR8unD4GyKxhoQupDJpxdn8ILV_4CroeHwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28593476</pqid></control><display><type>article</type><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><source>ScienceDirect Journals</source><creator>Danumjaya, P. ; Pani, Amiya K.</creator><creatorcontrib>Danumjaya, P. ; Pani, Amiya K.</creatorcontrib><description>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2004.04.002</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A priori bounds ; Exact sciences and technology ; Extended Fisher–Kolmogorov (EFK) equation ; Fourier analysis ; Gaussian quadrature rule ; Lyapunov functional ; Mathematical analysis ; Mathematics ; Monomial basis functions ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimal order of convergence ; Ordinary differential equations ; Orthogonal cubic spline collocation method ; RADAU 5 ; Sciences and techniques of general use ; Second-order splitting</subject><ispartof>Journal of computational and applied mathematics, 2005-02, Vol.174 (1), p.101-117</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</citedby><cites>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16267525$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Danumjaya, P.</creatorcontrib><creatorcontrib>Pani, Amiya K.</creatorcontrib><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><title>Journal of computational and applied mathematics</title><description>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</description><subject>A priori bounds</subject><subject>Exact sciences and technology</subject><subject>Extended Fisher–Kolmogorov (EFK) equation</subject><subject>Fourier analysis</subject><subject>Gaussian quadrature rule</subject><subject>Lyapunov functional</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Monomial basis functions</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimal order of convergence</subject><subject>Ordinary differential equations</subject><subject>Orthogonal cubic spline collocation method</subject><subject>RADAU 5</subject><subject>Sciences and techniques of general use</subject><subject>Second-order splitting</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM9q3DAQxkVJoZu0D9CbLu3N25GsPzY5hdA0oYFcWuhNyONxV4tsbSRvaG55h75hn6TebqC3wAcDw-_7hvkYey9gLUCYT9s1-nEtAdT6IJCv2Eo0tq2Etc0JW0FtbQVK2jfstJQtAJhWqBX7cZfnTfqZJh857ruAvOximIhjijGhn0Oa-EgL0_MhZT5viNOvmaaeen4Vyobyn6ffX1Mcl5CcHjjd7_-Z3rLXg4-F3j3PM_b96vO3y-vq9u7LzeXFbYW1NnNlUDfQeiOlbuWgO2WMr_tWDw3gsrUdedXLDoRQgiRo2VloUKOs6xZBqfqMfTzm7nK631OZ3RgKUox-orQvTja6rZU1CyiOIOZUSqbB7XIYfX50AtyhQ7d1S4fu0KE7COTi-fAc7gv6OGQ_YSj_jUYaq6VeuPMjR8unD4GyKxhoQupDJpxdn8ILV_4CroeHwA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Danumjaya, P.</creator><creator>Pani, Amiya K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050201</creationdate><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><author>Danumjaya, P. ; Pani, Amiya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>A priori bounds</topic><topic>Exact sciences and technology</topic><topic>Extended Fisher–Kolmogorov (EFK) equation</topic><topic>Fourier analysis</topic><topic>Gaussian quadrature rule</topic><topic>Lyapunov functional</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Monomial basis functions</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimal order of convergence</topic><topic>Ordinary differential equations</topic><topic>Orthogonal cubic spline collocation method</topic><topic>RADAU 5</topic><topic>Sciences and techniques of general use</topic><topic>Second-order splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danumjaya, P.</creatorcontrib><creatorcontrib>Pani, Amiya K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danumjaya, P.</au><au>Pani, Amiya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>174</volume><issue>1</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2004.04.002</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2005-02, Vol.174 (1), p.101-117 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_28593476 |
source | ScienceDirect Journals |
subjects | A priori bounds Exact sciences and technology Extended Fisher–Kolmogorov (EFK) equation Fourier analysis Gaussian quadrature rule Lyapunov functional Mathematical analysis Mathematics Monomial basis functions Numerical analysis Numerical analysis. Scientific computation Optimal order of convergence Ordinary differential equations Orthogonal cubic spline collocation method RADAU 5 Sciences and techniques of general use Second-order splitting |
title | Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20cubic%20spline%20collocation%20method%20for%20the%20extended%20Fisher%E2%80%93Kolmogorov%20equation&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Danumjaya,%20P.&rft.date=2005-02-01&rft.volume=174&rft.issue=1&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2004.04.002&rft_dat=%3Cproquest_cross%3E28593476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28593476&rft_id=info:pmid/&rfr_iscdi=true |