Loading…

Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation

A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established fo...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2005-02, Vol.174 (1), p.101-117
Main Authors: Danumjaya, P., Pani, Amiya K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443
cites cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443
container_end_page 117
container_issue 1
container_start_page 101
container_title Journal of computational and applied mathematics
container_volume 174
creator Danumjaya, P.
Pani, Amiya K.
description A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.
doi_str_mv 10.1016/j.cam.2004.04.002
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28593476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042704001748</els_id><sourcerecordid>28593476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</originalsourceid><addsrcrecordid>eNp9kM9q3DAQxkVJoZu0D9CbLu3N25GsPzY5hdA0oYFcWuhNyONxV4tsbSRvaG55h75hn6TebqC3wAcDw-_7hvkYey9gLUCYT9s1-nEtAdT6IJCv2Eo0tq2Etc0JW0FtbQVK2jfstJQtAJhWqBX7cZfnTfqZJh857ruAvOximIhjijGhn0Oa-EgL0_MhZT5viNOvmaaeen4Vyobyn6ffX1Mcl5CcHjjd7_-Z3rLXg4-F3j3PM_b96vO3y-vq9u7LzeXFbYW1NnNlUDfQeiOlbuWgO2WMr_tWDw3gsrUdedXLDoRQgiRo2VloUKOs6xZBqfqMfTzm7nK631OZ3RgKUox-orQvTja6rZU1CyiOIOZUSqbB7XIYfX50AtyhQ7d1S4fu0KE7COTi-fAc7gv6OGQ_YSj_jUYaq6VeuPMjR8unD4GyKxhoQupDJpxdn8ILV_4CroeHwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28593476</pqid></control><display><type>article</type><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><source>ScienceDirect Journals</source><creator>Danumjaya, P. ; Pani, Amiya K.</creator><creatorcontrib>Danumjaya, P. ; Pani, Amiya K.</creatorcontrib><description>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2004.04.002</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A priori bounds ; Exact sciences and technology ; Extended Fisher–Kolmogorov (EFK) equation ; Fourier analysis ; Gaussian quadrature rule ; Lyapunov functional ; Mathematical analysis ; Mathematics ; Monomial basis functions ; Numerical analysis ; Numerical analysis. Scientific computation ; Optimal order of convergence ; Ordinary differential equations ; Orthogonal cubic spline collocation method ; RADAU 5 ; Sciences and techniques of general use ; Second-order splitting</subject><ispartof>Journal of computational and applied mathematics, 2005-02, Vol.174 (1), p.101-117</ispartof><rights>2004 Elsevier B.V.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</citedby><cites>FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16267525$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Danumjaya, P.</creatorcontrib><creatorcontrib>Pani, Amiya K.</creatorcontrib><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><title>Journal of computational and applied mathematics</title><description>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</description><subject>A priori bounds</subject><subject>Exact sciences and technology</subject><subject>Extended Fisher–Kolmogorov (EFK) equation</subject><subject>Fourier analysis</subject><subject>Gaussian quadrature rule</subject><subject>Lyapunov functional</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Monomial basis functions</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimal order of convergence</subject><subject>Ordinary differential equations</subject><subject>Orthogonal cubic spline collocation method</subject><subject>RADAU 5</subject><subject>Sciences and techniques of general use</subject><subject>Second-order splitting</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM9q3DAQxkVJoZu0D9CbLu3N25GsPzY5hdA0oYFcWuhNyONxV4tsbSRvaG55h75hn6TebqC3wAcDw-_7hvkYey9gLUCYT9s1-nEtAdT6IJCv2Eo0tq2Etc0JW0FtbQVK2jfstJQtAJhWqBX7cZfnTfqZJh857ruAvOximIhjijGhn0Oa-EgL0_MhZT5viNOvmaaeen4Vyobyn6ffX1Mcl5CcHjjd7_-Z3rLXg4-F3j3PM_b96vO3y-vq9u7LzeXFbYW1NnNlUDfQeiOlbuWgO2WMr_tWDw3gsrUdedXLDoRQgiRo2VloUKOs6xZBqfqMfTzm7nK631OZ3RgKUox-orQvTja6rZU1CyiOIOZUSqbB7XIYfX50AtyhQ7d1S4fu0KE7COTi-fAc7gv6OGQ_YSj_jUYaq6VeuPMjR8unD4GyKxhoQupDJpxdn8ILV_4CroeHwA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Danumjaya, P.</creator><creator>Pani, Amiya K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20050201</creationdate><title>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</title><author>Danumjaya, P. ; Pani, Amiya K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>A priori bounds</topic><topic>Exact sciences and technology</topic><topic>Extended Fisher–Kolmogorov (EFK) equation</topic><topic>Fourier analysis</topic><topic>Gaussian quadrature rule</topic><topic>Lyapunov functional</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Monomial basis functions</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimal order of convergence</topic><topic>Ordinary differential equations</topic><topic>Orthogonal cubic spline collocation method</topic><topic>RADAU 5</topic><topic>Sciences and techniques of general use</topic><topic>Second-order splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danumjaya, P.</creatorcontrib><creatorcontrib>Pani, Amiya K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danumjaya, P.</au><au>Pani, Amiya K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2005-02-01</date><risdate>2005</risdate><volume>174</volume><issue>1</issue><spage>101</spage><epage>117</epage><pages>101-117</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A second-order splitting combined with orthogonal cubic spline collocation method is formulated and analysed for the extended Fisher–Kolmogorov equation. With the help of Lyapunov functional, a bound in maximum norm is derived for the semidiscrete solution. Optimal error estimates are established for the semidiscrete case. Finally, using the monomial basis functions we present the numerical results in which the integration in time is performed using RADAU 5 software library.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2004.04.002</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2005-02, Vol.174 (1), p.101-117
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28593476
source ScienceDirect Journals
subjects A priori bounds
Exact sciences and technology
Extended Fisher–Kolmogorov (EFK) equation
Fourier analysis
Gaussian quadrature rule
Lyapunov functional
Mathematical analysis
Mathematics
Monomial basis functions
Numerical analysis
Numerical analysis. Scientific computation
Optimal order of convergence
Ordinary differential equations
Orthogonal cubic spline collocation method
RADAU 5
Sciences and techniques of general use
Second-order splitting
title Orthogonal cubic spline collocation method for the extended Fisher–Kolmogorov equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A27%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20cubic%20spline%20collocation%20method%20for%20the%20extended%20Fisher%E2%80%93Kolmogorov%20equation&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Danumjaya,%20P.&rft.date=2005-02-01&rft.volume=174&rft.issue=1&rft.spage=101&rft.epage=117&rft.pages=101-117&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2004.04.002&rft_dat=%3Cproquest_cross%3E28593476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-6c5809a622592f5b466a3d95f80ca627bea4d2b01141e2052b708c5c2339c0443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28593476&rft_id=info:pmid/&rfr_iscdi=true