Loading…

AuPt Nanodonuts as a Novel Coreaction Accelerator and Luminophore for a Label-free Electrochemiluminescence Aptasensor

Novel and effective coreaction accelerators are of great importance in electrochemiluminescence (ECL) systems. In this work, novel AuPt nanodonuts, i.e., SnS2 quantum dots (QDs)/Cys-AuPt heterogeneous nanorings (NRs), serve as both a highly effective coreaction accelerator and the luminophore in a l...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2023-09, Vol.95 (37), p.13838-13843
Main Authors: Li, Jingxian, Luo, Mengyu, Yang, Hongfen, Cai, Ren, Tan, Weihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel and effective coreaction accelerators are of great importance in electrochemiluminescence (ECL) systems. In this work, novel AuPt nanodonuts, i.e., SnS2 quantum dots (QDs)/Cys-AuPt heterogeneous nanorings (NRs), serve as both a highly effective coreaction accelerator and the luminophore in a label-free ECL aptasensor. The novel AuPt nanodonuts were formed by decorating SnS2 QDs onto AuPt NR surfaces, which would promote the production of more coreactant intermediate in the SnS2 QDs/K2S2O8 system. As a result, the ECL performance was greatly improved. Meanwhile, l-cysteine (l-Cys) played an important role in the combination between AuPt NRs and SnS2 QDs, and the nanodonuts served as the matrix to load numerous lincomycin (Lin) aptamers. Under optimal conditions, the ECL aptasensor exhibited ultrasensitive detection of Lin from 1 fg/mL to 0.1 pg/mL with a limit of detection (LOD) of 0.7 fg/mL (1.72 fM).
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.3c01890