Loading…
A Study of Nitrogen Effect on the Characteristics of Creep-Rupture in 18Cr-9Ni Austenitic Steels
To understand the effects of nitrogen on high temperature, creep-rupture tests have been conducted at 973 and 1073K for 18Cr-9Ni austenitic stainless steels with 0.14 and 0.08wt% nitrogen contents. It is observed that creep-rupture life of 18Cr-9Ni-0.14N steel is longer than that of 18Cr-9Ni-0.08N s...
Saved in:
Published in: | Key engineering materials 2005-11, Vol.297-300, p.409-414 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To understand the effects of nitrogen on high temperature, creep-rupture tests have been conducted at 973 and 1073K for 18Cr-9Ni austenitic stainless steels with 0.14 and 0.08wt% nitrogen contents. It is observed that creep-rupture life of 18Cr-9Ni-0.14N steel is longer than that of 18Cr-9Ni-0.08N steel. To verify the difference in creep-rupture life between two alloys, scanning electron microscope and transmission electron microscopy are used to observe the microstructure. From the observations, it is known that the Cr-rich carbides are precipitated mainly at the grain boundary. Comparing the ratio of the linear density of the precipitate particles, the higher nitrogen content is, the less carbide is precipitated. Nitrogen might retard the formation of carbides at the grain boundary and reduce the density of cavity sites which are one of the main grain boundary damages. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.297-300.409 |