Loading…
Environment and oxidation state of molybdenum in simulated high level nuclear waste glass compositions
Alkali borosilicate glasses containing between 20 and 35wt% of a simulated high level nuclear waste stream with varying Li2O contents were melted under neutral (air) and reducing (nitrogen/hydrogen) conditions. XRD analysis of the as-cast glasses showed a tendency for the products to remain amorphou...
Saved in:
Published in: | Journal of nuclear materials 2005-04, Vol.340 (2-3), p.179-186 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Alkali borosilicate glasses containing between 20 and 35wt% of a simulated high level nuclear waste stream with varying Li2O contents were melted under neutral (air) and reducing (nitrogen/hydrogen) conditions. XRD analysis of the as-cast glasses showed a tendency for the products to remain amorphous when melted under neutral conditions and for metallic silver to develop in the reduced melts. EXAFS analysis revealed (MoO4)2− tetrahedra in all glasses regardless of the sparge applied during melting. The glasses were heat treated to simulate an interruption to the cooling system used to prevent heat build-up in the vitrified product store. Powellite-type molybdate phases were found to develop in the heat treated samples and formed at lower waste loadings in glasses sparged with a reducing gas. A reduction in the quantity of Li2O lead to a reduction in the quantity of powellite-type molybdate phases. EDS showed the primary molybdate phase to be high in Sr and rare earth elements and TEM indicated that the presence of silver metal encouraged molybdate formation. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/j.jnucmat.2004.11.008 |