Loading…
Artificial neural networks in power system restoration
Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance....
Saved in:
Published in: | IEEE transactions on power delivery 2003-10, Vol.18 (4), p.1181-1186 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3 |
container_end_page | 1186 |
container_issue | 4 |
container_start_page | 1181 |
container_title | IEEE transactions on power delivery |
container_volume | 18 |
creator | Bretas, A.S. Phadke, A.G. |
description | Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications. |
doi_str_mv | 10.1109/TPWRD.2003.817500 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28600295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1234667</ieee_id><sourcerecordid>2428950121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QNwMLnQ19eadLItvKChScRlmMhlInU5qMkPpv3faCoILV2fznXO5H0LnGCYYg76Zv3683U0IAJ0oLDnAARphTWXOCKhDNAKleK60lMfoJKUFADDQMEJiGjtfe-uLJmtdH3fRrUP8TJlvs1VYu5ilTercMosudSEWnQ_tKTqqiya5s58co_eH-_ntUz57eXy-nc5ySznt8kIVHFuMXVkqoevaYmcpc7KiWDjBAXNlXWVBylJCSRityrqykhPCSqygpmN0vd9dxfDVD_fN0ifrmqZoXeiT0YCFxpSqgbz6lyRKABDNB_DyD7gIfWyHL4xSjDCmuB4gvIdsDClFV5tV9MsibgwGsxVudsLNVrjZCx86F_uOd8798oQyIST9BswufBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884244859</pqid></control><display><type>article</type><title>Artificial neural networks in power system restoration</title><source>IEEE Xplore (Online service)</source><creator>Bretas, A.S. ; Phadke, A.G.</creator><creatorcontrib>Bretas, A.S. ; Phadke, A.G.</creatorcontrib><description>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2003.817500</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Circuit breakers ; Guidelines ; Intelligent networks ; Medical services ; Power system analysis computing ; Power system protection ; Power system restoration ; Signal restoration ; Switching circuits</subject><ispartof>IEEE transactions on power delivery, 2003-10, Vol.18 (4), p.1181-1186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</citedby><cites>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1234667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bretas, A.S.</creatorcontrib><creatorcontrib>Phadke, A.G.</creatorcontrib><title>Artificial neural networks in power system restoration</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</description><subject>Artificial neural networks</subject><subject>Circuit breakers</subject><subject>Guidelines</subject><subject>Intelligent networks</subject><subject>Medical services</subject><subject>Power system analysis computing</subject><subject>Power system protection</subject><subject>Power system restoration</subject><subject>Signal restoration</subject><subject>Switching circuits</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QNwMLnQ19eadLItvKChScRlmMhlInU5qMkPpv3faCoILV2fznXO5H0LnGCYYg76Zv3683U0IAJ0oLDnAARphTWXOCKhDNAKleK60lMfoJKUFADDQMEJiGjtfe-uLJmtdH3fRrUP8TJlvs1VYu5ilTercMosudSEWnQ_tKTqqiya5s58co_eH-_ntUz57eXy-nc5ySznt8kIVHFuMXVkqoevaYmcpc7KiWDjBAXNlXWVBylJCSRityrqykhPCSqygpmN0vd9dxfDVD_fN0ifrmqZoXeiT0YCFxpSqgbz6lyRKABDNB_DyD7gIfWyHL4xSjDCmuB4gvIdsDClFV5tV9MsibgwGsxVudsLNVrjZCx86F_uOd8798oQyIST9BswufBo</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Bretas, A.S.</creator><creator>Phadke, A.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20031001</creationdate><title>Artificial neural networks in power system restoration</title><author>Bretas, A.S. ; Phadke, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial neural networks</topic><topic>Circuit breakers</topic><topic>Guidelines</topic><topic>Intelligent networks</topic><topic>Medical services</topic><topic>Power system analysis computing</topic><topic>Power system protection</topic><topic>Power system restoration</topic><topic>Signal restoration</topic><topic>Switching circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretas, A.S.</creatorcontrib><creatorcontrib>Phadke, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretas, A.S.</au><au>Phadke, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks in power system restoration</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>18</volume><issue>4</issue><spage>1181</spage><epage>1186</epage><pages>1181-1186</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2003.817500</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2003-10, Vol.18 (4), p.1181-1186 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_miscellaneous_28600295 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Circuit breakers Guidelines Intelligent networks Medical services Power system analysis computing Power system protection Power system restoration Signal restoration Switching circuits |
title | Artificial neural networks in power system restoration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20in%20power%20system%20restoration&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Bretas,%20A.S.&rft.date=2003-10-01&rft.volume=18&rft.issue=4&rft.spage=1181&rft.epage=1186&rft.pages=1181-1186&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2003.817500&rft_dat=%3Cproquest_cross%3E2428950121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884244859&rft_id=info:pmid/&rft_ieee_id=1234667&rfr_iscdi=true |