Loading…

Artificial neural networks in power system restoration

Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2003-10, Vol.18 (4), p.1181-1186
Main Authors: Bretas, A.S., Phadke, A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3
cites cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3
container_end_page 1186
container_issue 4
container_start_page 1181
container_title IEEE transactions on power delivery
container_volume 18
creator Bretas, A.S.
Phadke, A.G.
description Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.
doi_str_mv 10.1109/TPWRD.2003.817500
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28600295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1234667</ieee_id><sourcerecordid>2428950121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QNwMLnQ19eadLItvKChScRlmMhlInU5qMkPpv3faCoILV2fznXO5H0LnGCYYg76Zv3683U0IAJ0oLDnAARphTWXOCKhDNAKleK60lMfoJKUFADDQMEJiGjtfe-uLJmtdH3fRrUP8TJlvs1VYu5ilTercMosudSEWnQ_tKTqqiya5s58co_eH-_ntUz57eXy-nc5ySznt8kIVHFuMXVkqoevaYmcpc7KiWDjBAXNlXWVBylJCSRityrqykhPCSqygpmN0vd9dxfDVD_fN0ifrmqZoXeiT0YCFxpSqgbz6lyRKABDNB_DyD7gIfWyHL4xSjDCmuB4gvIdsDClFV5tV9MsibgwGsxVudsLNVrjZCx86F_uOd8798oQyIST9BswufBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884244859</pqid></control><display><type>article</type><title>Artificial neural networks in power system restoration</title><source>IEEE Xplore (Online service)</source><creator>Bretas, A.S. ; Phadke, A.G.</creator><creatorcontrib>Bretas, A.S. ; Phadke, A.G.</creatorcontrib><description>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2003.817500</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Circuit breakers ; Guidelines ; Intelligent networks ; Medical services ; Power system analysis computing ; Power system protection ; Power system restoration ; Signal restoration ; Switching circuits</subject><ispartof>IEEE transactions on power delivery, 2003-10, Vol.18 (4), p.1181-1186</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</citedby><cites>FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1234667$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Bretas, A.S.</creatorcontrib><creatorcontrib>Phadke, A.G.</creatorcontrib><title>Artificial neural networks in power system restoration</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</description><subject>Artificial neural networks</subject><subject>Circuit breakers</subject><subject>Guidelines</subject><subject>Intelligent networks</subject><subject>Medical services</subject><subject>Power system analysis computing</subject><subject>Power system protection</subject><subject>Power system restoration</subject><subject>Signal restoration</subject><subject>Switching circuits</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QNwMLnQ19eadLItvKChScRlmMhlInU5qMkPpv3faCoILV2fznXO5H0LnGCYYg76Zv3683U0IAJ0oLDnAARphTWXOCKhDNAKleK60lMfoJKUFADDQMEJiGjtfe-uLJmtdH3fRrUP8TJlvs1VYu5ilTercMosudSEWnQ_tKTqqiya5s58co_eH-_ntUz57eXy-nc5ySznt8kIVHFuMXVkqoevaYmcpc7KiWDjBAXNlXWVBylJCSRityrqykhPCSqygpmN0vd9dxfDVD_fN0ifrmqZoXeiT0YCFxpSqgbz6lyRKABDNB_DyD7gIfWyHL4xSjDCmuB4gvIdsDClFV5tV9MsibgwGsxVudsLNVrjZCx86F_uOd8798oQyIST9BswufBo</recordid><startdate>20031001</startdate><enddate>20031001</enddate><creator>Bretas, A.S.</creator><creator>Phadke, A.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20031001</creationdate><title>Artificial neural networks in power system restoration</title><author>Bretas, A.S. ; Phadke, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Artificial neural networks</topic><topic>Circuit breakers</topic><topic>Guidelines</topic><topic>Intelligent networks</topic><topic>Medical services</topic><topic>Power system analysis computing</topic><topic>Power system protection</topic><topic>Power system restoration</topic><topic>Signal restoration</topic><topic>Switching circuits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bretas, A.S.</creatorcontrib><creatorcontrib>Phadke, A.G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bretas, A.S.</au><au>Phadke, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural networks in power system restoration</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2003-10-01</date><risdate>2003</risdate><volume>18</volume><issue>4</issue><spage>1181</spage><epage>1186</epage><pages>1181-1186</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>Power system restoration (PSR) has been a subject of study for many years. Many techniques were proposed to solve the limitations of the predetermined restoration guidelines and procedures used by a majority of system operators to restore a system following the occurrence of a wide area disturbance. This paper discusses limitations encountered in some currently used PSR techniques and a proposed improvement based on artificial neural networks (ANNs). The proposed scheme is tested on a 162-bus transmission system and compared with a breadth-search restoration scheme. The results indicate that the use of ANN in power system restoration is a feasible option that should be considered for real-time applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2003.817500</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2003-10, Vol.18 (4), p.1181-1186
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_28600295
source IEEE Xplore (Online service)
subjects Artificial neural networks
Circuit breakers
Guidelines
Intelligent networks
Medical services
Power system analysis computing
Power system protection
Power system restoration
Signal restoration
Switching circuits
title Artificial neural networks in power system restoration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20networks%20in%20power%20system%20restoration&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Bretas,%20A.S.&rft.date=2003-10-01&rft.volume=18&rft.issue=4&rft.spage=1181&rft.epage=1186&rft.pages=1181-1186&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2003.817500&rft_dat=%3Cproquest_cross%3E2428950121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c353t-a8a51c11ebb869ffc1ec34e7d316e650158cedc077b70b243dbfdc75224b180f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884244859&rft_id=info:pmid/&rft_ieee_id=1234667&rfr_iscdi=true