Loading…

A single-iteration threshold Hamming network

We analyze in detail the performance of a Hamming network classifying inputs that are distorted versions of one of its m stored memory patterns, each being a binary vector of length n. It is shown that the activation function of the memory neurons in the original Hamming network may be replaced by a...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural networks 1995-01, Vol.6 (1), p.261-266
Main Authors: Meilijson, I., Ruppin, E., Sipper, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We analyze in detail the performance of a Hamming network classifying inputs that are distorted versions of one of its m stored memory patterns, each being a binary vector of length n. It is shown that the activation function of the memory neurons in the original Hamming network may be replaced by a simple threshold function. By judiciously determining the threshold value, the "winner-take-all" subnet of the Hamming network (known to be the essential factor determining the time complexity of the network's computation) may be altogether discarded. For m growing exponentially in n, the resulting threshold Hamming network correctly classifies the input pattern in a single iteration, with probability approaching 1.< >
ISSN:1045-9227
1941-0093
DOI:10.1109/72.363428