Loading…

Photoionizing feedback in star cluster formation

We present the first ever hydrodynamic calculations of star cluster formation that incorporate the effect of feedback from ionizing radiation. In our simulations, the ionizing source forms in the cluster core at the intersection of several dense filaments of inflowing gas. We show that these filamen...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2005-03, Vol.358 (1), p.291-304
Main Authors: Dale, J. E., Bonnell, I. A., Clarke, C. J., Bate, M. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the first ever hydrodynamic calculations of star cluster formation that incorporate the effect of feedback from ionizing radiation. In our simulations, the ionizing source forms in the cluster core at the intersection of several dense filaments of inflowing gas. We show that these filaments collimate ionized outflows and suggest such an environmental origin for at least some observed outflows in regions of massive star formation. Our simulations show both positive feedback (i.e. promotion of star formation in neutral gas compressed by expanding Hii regions) and negative feedback (i.e. suppression of the accretion flow in to the central regions). We show that the volume filling factor of ionized gas is very different in our simulations from the result from the case where the central source interacted with an azimuthally smoothed gas density distribution. As expected, gas density is the key parameter in determining whether or not clusters are unbound by photoionizing radiation. Nevertheless, we find – on account of the acceleration of a small fraction of the gas to high velocities in the outflows – that the deposition in the gas of an energy that exceeds the binding energy of the cluster is not a sufficient criterion for unbinding the bulk of the cluster mass.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2005.08806.x