Loading…

Population balance modelling of fluidized bed melt granulation : An overview

This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both th...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering research & design 2005-07, Vol.83 (7), p.871-880
Main Authors: TAN, H. S, GOLDSCHMIDT, M. J. V, BOEREFIJN, R, HOUNSLOW, M. J, SALMAN, A. D, KUIPERS, J. A. M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 880
container_issue 7
container_start_page 871
container_title Chemical engineering research & design
container_volume 83
creator TAN, H. S
GOLDSCHMIDT, M. J. V
BOEREFIJN, R
HOUNSLOW, M. J
SALMAN, A. D
KUIPERS, J. A. M
description This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both theoretical and experimental means. The development of an aggregation model involves the use of the kinetic theory of granular flow to identify an aggregation model based on the description of the particle collision rate for multi-components mixture in fluidized bed. This model is analogous to the equipartition of the kinetic energy (EKE) model and thus serves as its theoretical basis. The process of selecting a breakage model involves the coupling of tracer experiments with two dimensional (2-D) population balance modelling to identify and validate the breakage model. The breakage function describes the breaking of granule into two larger fragments and some smaller fragments (i.e., primaries) while the selection rate function is taken to be size and time independent. Two different approaches have been taken to model a range of experimental data obtained at various operating conditions using a discretized population balance model: (1) modelling the net rate of granule growth; and (2) simultaneous modelling of the aggregation and breakage process. Both techniques describes the experimental granule size distributions well, thereby allowing us to relate the extracted rate constants to process conditions and interpret their influence on granulation kinetics.
doi_str_mv 10.1205/cherd.04347
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28601134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28601134</sourcerecordid><originalsourceid>FETCH-LOGICAL-g253t-43f034a7a83c878f68a9273f02c23ccb2f04ba5059dcd5ce06f1c04ed12e7d1a3</originalsourceid><addsrcrecordid>eNo1jk1LAzEYhHNQsFZP_oFc9LY130m9laJVKOhBz8u7-aiR7KZudiv6612wHoaB4ZlhELqiZEEZkbf23fduQQQX-gTNCFO8MlqxM3ReygchhGphZmj7kvdjgiHmDjeQoLMet9n5lGK3wzngkMbo4o93uJnU-jTgXQ_df-cOrzqcD74_RP91gU4DpOIvjz5Hbw_3r-vHavu8eVqvttWOST5UggfCBWgw3BptgjKwZHoKmWXc2oYFIhqQRC6dddJ6ogK1RHhHmdeOAp-jm7_dfZ8_R1-Guo3FTp-h83ksNTOKUMrFBF4fQSgWUpiO21jqfR9b6L9rqpZSUiX5L1i9XCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28601134</pqid></control><display><type>article</type><title>Population balance modelling of fluidized bed melt granulation : An overview</title><source>ScienceDirect Journals</source><creator>TAN, H. S ; GOLDSCHMIDT, M. J. V ; BOEREFIJN, R ; HOUNSLOW, M. J ; SALMAN, A. D ; KUIPERS, J. A. M</creator><creatorcontrib>TAN, H. S ; GOLDSCHMIDT, M. J. V ; BOEREFIJN, R ; HOUNSLOW, M. J ; SALMAN, A. D ; KUIPERS, J. A. M</creatorcontrib><description>This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both theoretical and experimental means. The development of an aggregation model involves the use of the kinetic theory of granular flow to identify an aggregation model based on the description of the particle collision rate for multi-components mixture in fluidized bed. This model is analogous to the equipartition of the kinetic energy (EKE) model and thus serves as its theoretical basis. The process of selecting a breakage model involves the coupling of tracer experiments with two dimensional (2-D) population balance modelling to identify and validate the breakage model. The breakage function describes the breaking of granule into two larger fragments and some smaller fragments (i.e., primaries) while the selection rate function is taken to be size and time independent. Two different approaches have been taken to model a range of experimental data obtained at various operating conditions using a discretized population balance model: (1) modelling the net rate of granule growth; and (2) simultaneous modelling of the aggregation and breakage process. Both techniques describes the experimental granule size distributions well, thereby allowing us to relate the extracted rate constants to process conditions and interpret their influence on granulation kinetics.</description><identifier>ISSN: 0263-8762</identifier><identifier>DOI: 10.1205/cherd.04347</identifier><identifier>CODEN: CERDEE</identifier><language>eng</language><publisher>Rugby: Institution of Chemical Engineers</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; Fluidization ; Miscellaneous ; Sintering, pelletization, granulation ; Solid-solid systems</subject><ispartof>Chemical engineering research &amp; design, 2005-07, Vol.83 (7), p.871-880</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16955165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>TAN, H. S</creatorcontrib><creatorcontrib>GOLDSCHMIDT, M. J. V</creatorcontrib><creatorcontrib>BOEREFIJN, R</creatorcontrib><creatorcontrib>HOUNSLOW, M. J</creatorcontrib><creatorcontrib>SALMAN, A. D</creatorcontrib><creatorcontrib>KUIPERS, J. A. M</creatorcontrib><title>Population balance modelling of fluidized bed melt granulation : An overview</title><title>Chemical engineering research &amp; design</title><description>This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both theoretical and experimental means. The development of an aggregation model involves the use of the kinetic theory of granular flow to identify an aggregation model based on the description of the particle collision rate for multi-components mixture in fluidized bed. This model is analogous to the equipartition of the kinetic energy (EKE) model and thus serves as its theoretical basis. The process of selecting a breakage model involves the coupling of tracer experiments with two dimensional (2-D) population balance modelling to identify and validate the breakage model. The breakage function describes the breaking of granule into two larger fragments and some smaller fragments (i.e., primaries) while the selection rate function is taken to be size and time independent. Two different approaches have been taken to model a range of experimental data obtained at various operating conditions using a discretized population balance model: (1) modelling the net rate of granule growth; and (2) simultaneous modelling of the aggregation and breakage process. Both techniques describes the experimental granule size distributions well, thereby allowing us to relate the extracted rate constants to process conditions and interpret their influence on granulation kinetics.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Miscellaneous</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><issn>0263-8762</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1jk1LAzEYhHNQsFZP_oFc9LY130m9laJVKOhBz8u7-aiR7KZudiv6612wHoaB4ZlhELqiZEEZkbf23fduQQQX-gTNCFO8MlqxM3ReygchhGphZmj7kvdjgiHmDjeQoLMet9n5lGK3wzngkMbo4o93uJnU-jTgXQ_df-cOrzqcD74_RP91gU4DpOIvjz5Hbw_3r-vHavu8eVqvttWOST5UggfCBWgw3BptgjKwZHoKmWXc2oYFIhqQRC6dddJ6ogK1RHhHmdeOAp-jm7_dfZ8_R1-Guo3FTp-h83ksNTOKUMrFBF4fQSgWUpiO21jqfR9b6L9rqpZSUiX5L1i9XCs</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>TAN, H. S</creator><creator>GOLDSCHMIDT, M. J. V</creator><creator>BOEREFIJN, R</creator><creator>HOUNSLOW, M. J</creator><creator>SALMAN, A. D</creator><creator>KUIPERS, J. A. M</creator><general>Institution of Chemical Engineers</general><scope>IQODW</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050701</creationdate><title>Population balance modelling of fluidized bed melt granulation : An overview</title><author>TAN, H. S ; GOLDSCHMIDT, M. J. V ; BOEREFIJN, R ; HOUNSLOW, M. J ; SALMAN, A. D ; KUIPERS, J. A. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g253t-43f034a7a83c878f68a9273f02c23ccb2f04ba5059dcd5ce06f1c04ed12e7d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Miscellaneous</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TAN, H. S</creatorcontrib><creatorcontrib>GOLDSCHMIDT, M. J. V</creatorcontrib><creatorcontrib>BOEREFIJN, R</creatorcontrib><creatorcontrib>HOUNSLOW, M. J</creatorcontrib><creatorcontrib>SALMAN, A. D</creatorcontrib><creatorcontrib>KUIPERS, J. A. M</creatorcontrib><collection>Pascal-Francis</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TAN, H. S</au><au>GOLDSCHMIDT, M. J. V</au><au>BOEREFIJN, R</au><au>HOUNSLOW, M. J</au><au>SALMAN, A. D</au><au>KUIPERS, J. A. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population balance modelling of fluidized bed melt granulation : An overview</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>83</volume><issue>7</issue><spage>871</spage><epage>880</epage><pages>871-880</pages><issn>0263-8762</issn><coden>CERDEE</coden><abstract>This paper presents an overview of the work undertaken by our group to identify and quantify the rates processes active in fluidized bed melt granulation (FBMG). The process involves the identification and development of physically representative models to mechanistically describe FBMG using both theoretical and experimental means. The development of an aggregation model involves the use of the kinetic theory of granular flow to identify an aggregation model based on the description of the particle collision rate for multi-components mixture in fluidized bed. This model is analogous to the equipartition of the kinetic energy (EKE) model and thus serves as its theoretical basis. The process of selecting a breakage model involves the coupling of tracer experiments with two dimensional (2-D) population balance modelling to identify and validate the breakage model. The breakage function describes the breaking of granule into two larger fragments and some smaller fragments (i.e., primaries) while the selection rate function is taken to be size and time independent. Two different approaches have been taken to model a range of experimental data obtained at various operating conditions using a discretized population balance model: (1) modelling the net rate of granule growth; and (2) simultaneous modelling of the aggregation and breakage process. Both techniques describes the experimental granule size distributions well, thereby allowing us to relate the extracted rate constants to process conditions and interpret their influence on granulation kinetics.</abstract><cop>Rugby</cop><pub>Institution of Chemical Engineers</pub><doi>10.1205/cherd.04347</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2005-07, Vol.83 (7), p.871-880
issn 0263-8762
language eng
recordid cdi_proquest_miscellaneous_28601134
source ScienceDirect Journals
subjects Applied sciences
Chemical engineering
Exact sciences and technology
Fluidization
Miscellaneous
Sintering, pelletization, granulation
Solid-solid systems
title Population balance modelling of fluidized bed melt granulation : An overview
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20balance%20modelling%20of%20fluidized%20bed%20melt%20granulation%20:%20An%20overview&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=TAN,%20H.%20S&rft.date=2005-07-01&rft.volume=83&rft.issue=7&rft.spage=871&rft.epage=880&rft.pages=871-880&rft.issn=0263-8762&rft.coden=CERDEE&rft_id=info:doi/10.1205/cherd.04347&rft_dat=%3Cproquest_pasca%3E28601134%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g253t-43f034a7a83c878f68a9273f02c23ccb2f04ba5059dcd5ce06f1c04ed12e7d1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28601134&rft_id=info:pmid/&rfr_iscdi=true