Loading…

Reversible photocontrol of molecular assemblies of metal complex containing azo-amphiphiles

Photo-controllable molecular systems, [M(en)2][Pt(en)2Cl2](1)4 (M2+=Pt2+, Pd2+ and en=ethylenediamine), have been designed by the self-assembly of chloride-bridged platinum/palladium complexes and photochromic amphiphiles of the azobenzene derivative, 4-[4-(N-methyl-N-n-dodecylamino)phenylazo]benzen...

Full description

Saved in:
Bibliographic Details
Published in:Thin solid films 2005-12, Vol.493 (1-2), p.230-236
Main Authors: Einaga, Yasuaki, Mikami, Rie, Akitsu, Takashiro, Li, Guangming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Photo-controllable molecular systems, [M(en)2][Pt(en)2Cl2](1)4 (M2+=Pt2+, Pd2+ and en=ethylenediamine), have been designed by the self-assembly of chloride-bridged platinum/palladium complexes and photochromic amphiphiles of the azobenzene derivative, 4-[4-(N-methyl-N-n-dodecylamino)phenylazo]benzene sulfonic acid (designated as compound 1). Reversible structural changes caused by cis–trans photoisomerization of azo groups in compound 1 were observed by alternating illumination of UV and visible light. Visible illumination resulted in the formation of the plate-like structures, whereas UV illumination resulted in fragmentation of the assembling structures. Reversible changes were observed in the electronic states of the chloride-bridged platinum/palladium complexes; the plate-like structures exhibited charge transfer absorption of chloride-bridged platinum complexes and delocalized Pt(II)/Pt(IV) states, while the fragments of the separated complexes exhibited no charge transfer bands. As a consequence, we have discovered that the reversible structural changes in this system could be controlled by photoillumination.
ISSN:0040-6090
1879-2731
DOI:10.1016/j.tsf.2004.06.198