Loading…
Targeted Degradation of Alpha-Synuclein by Autophagosome-Anchoring Chimera Peptides
Targeted protein degradation (TPD) confers knockdown of “undruggable” targets such as alpha-synuclein (αSyn), a pathogenic protein in multiple neurodegenerative diseases. Though many of these proteins were mainly degraded through the autophagy-lysosome pathway (ALP), few TPD tools harnessing the ALP...
Saved in:
Published in: | Journal of medicinal chemistry 2023-09, Vol.66 (17), p.12614-12628 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Targeted protein degradation (TPD) confers knockdown of “undruggable” targets such as alpha-synuclein (αSyn), a pathogenic protein in multiple neurodegenerative diseases. Though many of these proteins were mainly degraded through the autophagy-lysosome pathway (ALP), few TPD tools harnessing the ALP were reported. Herein, we developed a strategy termed autophagosome-anchoring chimera (ATACC), in which the protein of interest (POI) can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of an LC3-interacting region (LIR)-containing bifunctional peptide, and the selective autophagy of the POI is thus facilitated. A series of αSyn-targeting ATACC peptides were designed and synthesized. Biological evaluations demonstrated that these compounds could degrade αSyn specifically and effectively through a “chemical-induced cargo recognition–ALP degradation” mechanism. The neuroprotective effects of ATACC peptide P1 were further validated in vitro and in vivo. Collectively, our results provided a new TPD tool and revealed a potential therapeutic strategy against synucleinopathies. |
---|---|
ISSN: | 0022-2623 1520-4804 1520-4804 |
DOI: | 10.1021/acs.jmedchem.3c01303 |