Loading…

A survey of convergence results on particle filtering methods for practitioners

Optimal filtering problems are ubiquitous in signal processing and related fields. Except for a restricted class of models, the optimal filter does not admit a closed-form expression. Particle filtering methods are a set of flexible and powerful sequential Monte Carlo methods designed to. solve the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2002-03, Vol.50 (3), p.736-746
Main Authors: Crisan, D., Doucet, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimal filtering problems are ubiquitous in signal processing and related fields. Except for a restricted class of models, the optimal filter does not admit a closed-form expression. Particle filtering methods are a set of flexible and powerful sequential Monte Carlo methods designed to. solve the optimal filtering problem numerically. The posterior distribution of the state is approximated by a large set of Dirac-delta masses (samples/particles) that evolve randomly in time according to the dynamics of the model and the observations. The particles are interacting; thus, classical limit theorems relying on statistically independent samples do not apply. In this paper, our aim is to present a survey of convergence results on this class of methods to make them accessible to practitioners.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.984773