Loading…

Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy

BackgroundPathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medica...

Full description

Saved in:
Bibliographic Details
Published in:Journal of oral rehabilitation 2023-12, Vol.50 (12), p.1465-1480
Main Authors: Zeng, Peisheng, Song, Rihui, Lin, Yixiong, Li, Haopeng, Chen, Shijie, Shi, Mengru, Cai, Gengbin, Gong, Zhuohong, Huang, Kai, Chen, Zetao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033
cites cdi_FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033
container_end_page 1480
container_issue 12
container_start_page 1465
container_title Journal of oral rehabilitation
container_volume 50
creator Zeng, Peisheng
Song, Rihui
Lin, Yixiong
Li, Haopeng
Chen, Shijie
Shi, Mengru
Cai, Gengbin
Gong, Zhuohong
Huang, Kai
Chen, Zetao
description BackgroundPathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.ObjectivesTo develop a deep‐learning‐based screening model incorporating object detection and ‘straight‐forward’ classification strategy to screen out maxillary sinus abnormalities on CBCT images.MethodsThe large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and ‘straight‐forward’ classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a ‘normal‐or‐not’ classification.ResultsWe successfully constructed a deep‐learning model consist of well‐trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut‐off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist‐model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.ConclusionThe deep‐learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.
doi_str_mv 10.1111/joor.13585
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2860619675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2885163842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033</originalsourceid><addsrcrecordid>eNpdkb9OwzAQxi0EEqWw8ASWWBBSis-uE2csEf-kSixFYoucxAmOkrjYCdCtMxMjvF6fBLcwcct3w-9Od9-H0CmQCfi6rI2xE2Bc8D00AhbygIop3UcjwggPQNCnQ3TkXE0IEYxHI_QxyzpjW9ngVr7rppF2hZ3uBocLLavO-L7CpsPJVbLAupWVcvhVS2yyWuU9LlTvRXtAdgXerL9cb6WunvvN-rM09k3aYrP-xnkjndOlzuWOLZRa4kZJ2223b0d6Va2O0UEpG6dO_nSMHm-uF8ldMH-4vU9m8yCnMe2DiFNOYiWnnGUhMEqhBCaIKuIpZJQKqqDkZRaByChkcRQCTAuSRTyKgUjC2Bid_-5dWvMyKNenrXa58r93ygwupSIkIcRhxD169g-tzWA7f52nBIeQeXc9dfFL5dY4Z1WZLq23yq5SIOk2lnQbS7qLhf0A8MaEIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2885163842</pqid></control><display><type>article</type><title>Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy</title><source>Wiley</source><creator>Zeng, Peisheng ; Song, Rihui ; Lin, Yixiong ; Li, Haopeng ; Chen, Shijie ; Shi, Mengru ; Cai, Gengbin ; Gong, Zhuohong ; Huang, Kai ; Chen, Zetao</creator><creatorcontrib>Zeng, Peisheng ; Song, Rihui ; Lin, Yixiong ; Li, Haopeng ; Chen, Shijie ; Shi, Mengru ; Cai, Gengbin ; Gong, Zhuohong ; Huang, Kai ; Chen, Zetao</creatorcontrib><description>BackgroundPathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.ObjectivesTo develop a deep‐learning‐based screening model incorporating object detection and ‘straight‐forward’ classification strategy to screen out maxillary sinus abnormalities on CBCT images.MethodsThe large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and ‘straight‐forward’ classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a ‘normal‐or‐not’ classification.ResultsWe successfully constructed a deep‐learning model consist of well‐trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut‐off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist‐model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.ConclusionThe deep‐learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.</description><identifier>ISSN: 0305-182X</identifier><identifier>EISSN: 1365-2842</identifier><identifier>DOI: 10.1111/joor.13585</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Classification ; Deep learning ; Dental implants ; Dentists ; Maxillary sinus ; Sinuses</subject><ispartof>Journal of oral rehabilitation, 2023-12, Vol.50 (12), p.1465-1480</ispartof><rights>Copyright © 2023 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033</citedby><cites>FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033</cites><orcidid>0000-0001-8344-2602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zeng, Peisheng</creatorcontrib><creatorcontrib>Song, Rihui</creatorcontrib><creatorcontrib>Lin, Yixiong</creatorcontrib><creatorcontrib>Li, Haopeng</creatorcontrib><creatorcontrib>Chen, Shijie</creatorcontrib><creatorcontrib>Shi, Mengru</creatorcontrib><creatorcontrib>Cai, Gengbin</creatorcontrib><creatorcontrib>Gong, Zhuohong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Chen, Zetao</creatorcontrib><title>Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy</title><title>Journal of oral rehabilitation</title><description>BackgroundPathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.ObjectivesTo develop a deep‐learning‐based screening model incorporating object detection and ‘straight‐forward’ classification strategy to screen out maxillary sinus abnormalities on CBCT images.MethodsThe large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and ‘straight‐forward’ classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a ‘normal‐or‐not’ classification.ResultsWe successfully constructed a deep‐learning model consist of well‐trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut‐off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist‐model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.ConclusionThe deep‐learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.</description><subject>Classification</subject><subject>Deep learning</subject><subject>Dental implants</subject><subject>Dentists</subject><subject>Maxillary sinus</subject><subject>Sinuses</subject><issn>0305-182X</issn><issn>1365-2842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkb9OwzAQxi0EEqWw8ASWWBBSis-uE2csEf-kSixFYoucxAmOkrjYCdCtMxMjvF6fBLcwcct3w-9Od9-H0CmQCfi6rI2xE2Bc8D00AhbygIop3UcjwggPQNCnQ3TkXE0IEYxHI_QxyzpjW9ngVr7rppF2hZ3uBocLLavO-L7CpsPJVbLAupWVcvhVS2yyWuU9LlTvRXtAdgXerL9cb6WunvvN-rM09k3aYrP-xnkjndOlzuWOLZRa4kZJ2223b0d6Va2O0UEpG6dO_nSMHm-uF8ldMH-4vU9m8yCnMe2DiFNOYiWnnGUhMEqhBCaIKuIpZJQKqqDkZRaByChkcRQCTAuSRTyKgUjC2Bid_-5dWvMyKNenrXa58r93ygwupSIkIcRhxD169g-tzWA7f52nBIeQeXc9dfFL5dY4Z1WZLq23yq5SIOk2lnQbS7qLhf0A8MaEIQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Zeng, Peisheng</creator><creator>Song, Rihui</creator><creator>Lin, Yixiong</creator><creator>Li, Haopeng</creator><creator>Chen, Shijie</creator><creator>Shi, Mengru</creator><creator>Cai, Gengbin</creator><creator>Gong, Zhuohong</creator><creator>Huang, Kai</creator><creator>Chen, Zetao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8344-2602</orcidid></search><sort><creationdate>20231201</creationdate><title>Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy</title><author>Zeng, Peisheng ; Song, Rihui ; Lin, Yixiong ; Li, Haopeng ; Chen, Shijie ; Shi, Mengru ; Cai, Gengbin ; Gong, Zhuohong ; Huang, Kai ; Chen, Zetao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Deep learning</topic><topic>Dental implants</topic><topic>Dentists</topic><topic>Maxillary sinus</topic><topic>Sinuses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Peisheng</creatorcontrib><creatorcontrib>Song, Rihui</creatorcontrib><creatorcontrib>Lin, Yixiong</creatorcontrib><creatorcontrib>Li, Haopeng</creatorcontrib><creatorcontrib>Chen, Shijie</creatorcontrib><creatorcontrib>Shi, Mengru</creatorcontrib><creatorcontrib>Cai, Gengbin</creatorcontrib><creatorcontrib>Gong, Zhuohong</creatorcontrib><creatorcontrib>Huang, Kai</creatorcontrib><creatorcontrib>Chen, Zetao</creatorcontrib><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of oral rehabilitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Peisheng</au><au>Song, Rihui</au><au>Lin, Yixiong</au><au>Li, Haopeng</au><au>Chen, Shijie</au><au>Shi, Mengru</au><au>Cai, Gengbin</au><au>Gong, Zhuohong</au><au>Huang, Kai</au><au>Chen, Zetao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy</atitle><jtitle>Journal of oral rehabilitation</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>50</volume><issue>12</issue><spage>1465</spage><epage>1480</epage><pages>1465-1480</pages><issn>0305-182X</issn><eissn>1365-2842</eissn><abstract>BackgroundPathological maxillary sinus would affect implant treatment and even result in failure of maxillary sinus lift and implant surgery. However, the maxillary sinus abnormalities are challenging to be diagnosed through CBCT images, especially for young dentists or dentists in grassroots medical institutions without systematical education of general medicine.ObjectivesTo develop a deep‐learning‐based screening model incorporating object detection and ‘straight‐forward’ classification strategy to screen out maxillary sinus abnormalities on CBCT images.MethodsThe large area of background noise outside maxillary sinus would affect the generalisation and prediction accuracy of the model, and the diversity and imbalanced distribution of imaging manifestations may bring challenges to intellectualization. Thus we adopted an object detection to limit model's observation zone and ‘straight‐forward’ classification strategy with various tuning methods to adapt to dental clinical need and extract typical features of diverse manifestations so that turn the task into a ‘normal‐or‐not’ classification.ResultsWe successfully constructed a deep‐learning model consist of well‐trained detector and diagnostor module. This model achieved ideal AUROC and AUPRC of 0.953 and 0.887, reaching more than 90% accuracy at optimal cut‐off. McNemar and Kappa test verified no statistical difference and high consistency between the prediction and ground truth. Dentist‐model comparison test showed the model's statistically higher diagnostic performance than dental students. Visualisation method confirmed the model's effectiveness in region recognition and feature extraction.ConclusionThe deep‐learning model incorporating object detection and straightforward classification strategy could achieve satisfying predictive performance for screening maxillary sinus abnormalities on CBCT images.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/joor.13585</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8344-2602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-182X
ispartof Journal of oral rehabilitation, 2023-12, Vol.50 (12), p.1465-1480
issn 0305-182X
1365-2842
language eng
recordid cdi_proquest_miscellaneous_2860619675
source Wiley
subjects Classification
Deep learning
Dental implants
Dentists
Maxillary sinus
Sinuses
title Abnormal maxillary sinus diagnosing on CBCT images via object detection and ‘straight‐forward’ classification deep learning strategy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormal%20maxillary%20sinus%20diagnosing%20on%20CBCT%20images%20via%20object%20detection%20and%20%E2%80%98straight%E2%80%90forward%E2%80%99%20classification%20deep%20learning%20strategy&rft.jtitle=Journal%20of%20oral%20rehabilitation&rft.au=Zeng,%20Peisheng&rft.date=2023-12-01&rft.volume=50&rft.issue=12&rft.spage=1465&rft.epage=1480&rft.pages=1465-1480&rft.issn=0305-182X&rft.eissn=1365-2842&rft_id=info:doi/10.1111/joor.13585&rft_dat=%3Cproquest_cross%3E2885163842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-752509ea453b613221f1380ed941b2282e1f5fb718b21b976114d0b757910a033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2885163842&rft_id=info:pmid/&rfr_iscdi=true