Loading…
Machine Learning Algorithms to Predict Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: A Systematic Review and Meta-analysis
Delayed cerebral ischemia (DCI) is a common and severe complication after subarachnoid hemorrhage (SAH). Logistic regression (LR) is the primary method to predict DCI, but it has low accuracy. This study assessed whether other machine learning (ML) models can predict DCI after SAH more accurately th...
Saved in:
Published in: | Neurocritical care 2024-06, Vol.40 (3), p.1171-1181 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Delayed cerebral ischemia (DCI) is a common and severe complication after subarachnoid hemorrhage (SAH). Logistic regression (LR) is the primary method to predict DCI, but it has low accuracy. This study assessed whether other machine learning (ML) models can predict DCI after SAH more accurately than conventional LR. PubMed, Embase, and Web of Science were systematically searched for studies directly comparing LR and other ML algorithms to forecast DCI in patients with SAH. Our main outcome was the accuracy measurement, represented by sensitivity, specificity, and area under the receiver operating characteristic. In the six studies included, comprising 1828 patients, about 28% (519) developed DCI. For LR models, the pooled sensitivity was 0.71 (95% confidence interval [CI] 0.57–0.84;
p
|
---|---|
ISSN: | 1541-6933 1556-0961 1556-0961 |
DOI: | 10.1007/s12028-023-01832-z |