Loading…
Near-Wall Cavitation Effect: A Molecular Dynamics Study
Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluct...
Saved in:
Published in: | Langmuir 2023-09, Vol.39 (37), p.12975-12986 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3 |
container_end_page | 12986 |
container_issue | 37 |
container_start_page | 12975 |
container_title | Langmuir |
container_volume | 39 |
creator | Zhang, Dongwei Guan, Jian Li, Mingzhi Chen, Songxuan Tang, Songzhen Ha, Xiaoliang Song, Jiangbao |
description | Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect. |
doi_str_mv | 10.1021/acs.langmuir.3c00755 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861304793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861304793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJELgDyhc0jjMvrw2XRQSQApQAKJcjfeBHPkRdm2k_D2OElqmmWLuGekeQq4pzCgweosmzmpsv5qhCjNuAJSUJ2RCJYNU5kydkgkowVMlMn5OLmLcAEDBRTEh6sVhSD-xrpMF_lQ99lXXJkvvnenvknny3NXODDWG5H7XYlOZmLz1g91dkjOPdXRXxz0lH6vl--IxXb8-PC3m6xQ5k33KjRdgVK6slVAwVlrMJBPSYkkZK4RlSpUiZxY9ohonZ0b6jJa5VDZjnk_JzeHvNnTfg4u9bqpoXD3Wdd0QNcszykGogo9RcYia0MUYnNfbUDUYdpqC3nvSoyf950kfPY0YHLD9ddMNoR37_I_8AnzUbi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861304793</pqid></control><display><type>article</type><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</creator><creatorcontrib>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</creatorcontrib><description>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c00755</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2023-09, Vol.39 (37), p.12975-12986</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</citedby><cites>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</cites><orcidid>0000-0001-9794-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Li, Mingzhi</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Song, Jiangbao</creatorcontrib><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJELgDyhc0jjMvrw2XRQSQApQAKJcjfeBHPkRdm2k_D2OElqmmWLuGekeQq4pzCgweosmzmpsv5qhCjNuAJSUJ2RCJYNU5kydkgkowVMlMn5OLmLcAEDBRTEh6sVhSD-xrpMF_lQ99lXXJkvvnenvknny3NXODDWG5H7XYlOZmLz1g91dkjOPdXRXxz0lH6vl--IxXb8-PC3m6xQ5k33KjRdgVK6slVAwVlrMJBPSYkkZK4RlSpUiZxY9ohonZ0b6jJa5VDZjnk_JzeHvNnTfg4u9bqpoXD3Wdd0QNcszykGogo9RcYia0MUYnNfbUDUYdpqC3nvSoyf950kfPY0YHLD9ddMNoR37_I_8AnzUbi4</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>Zhang, Dongwei</creator><creator>Guan, Jian</creator><creator>Li, Mingzhi</creator><creator>Chen, Songxuan</creator><creator>Tang, Songzhen</creator><creator>Ha, Xiaoliang</creator><creator>Song, Jiangbao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid></search><sort><creationdate>20230919</creationdate><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><author>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Li, Mingzhi</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Song, Jiangbao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongwei</au><au>Guan, Jian</au><au>Li, Mingzhi</au><au>Chen, Songxuan</au><au>Tang, Songzhen</au><au>Ha, Xiaoliang</au><au>Song, Jiangbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Wall Cavitation Effect: A Molecular Dynamics Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-09-19</date><risdate>2023</risdate><volume>39</volume><issue>37</issue><spage>12975</spage><epage>12986</epage><pages>12975-12986</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.3c00755</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2023-09, Vol.39 (37), p.12975-12986 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_2861304793 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Near-Wall Cavitation Effect: A Molecular Dynamics Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Wall%20Cavitation%20Effect:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Langmuir&rft.au=Zhang,%20Dongwei&rft.date=2023-09-19&rft.volume=39&rft.issue=37&rft.spage=12975&rft.epage=12986&rft.pages=12975-12986&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c00755&rft_dat=%3Cproquest_cross%3E2861304793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861304793&rft_id=info:pmid/&rfr_iscdi=true |