Loading…

Near-Wall Cavitation Effect: A Molecular Dynamics Study

Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluct...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2023-09, Vol.39 (37), p.12975-12986
Main Authors: Zhang, Dongwei, Guan, Jian, Li, Mingzhi, Chen, Songxuan, Tang, Songzhen, Ha, Xiaoliang, Song, Jiangbao
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3
cites cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3
container_end_page 12986
container_issue 37
container_start_page 12975
container_title Langmuir
container_volume 39
creator Zhang, Dongwei
Guan, Jian
Li, Mingzhi
Chen, Songxuan
Tang, Songzhen
Ha, Xiaoliang
Song, Jiangbao
description Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.
doi_str_mv 10.1021/acs.langmuir.3c00755
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861304793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861304793</sourcerecordid><originalsourceid>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</originalsourceid><addsrcrecordid>eNp9kLtOw0AQRVcIJELgDyhc0jjMvrw2XRQSQApQAKJcjfeBHPkRdm2k_D2OElqmmWLuGekeQq4pzCgweosmzmpsv5qhCjNuAJSUJ2RCJYNU5kydkgkowVMlMn5OLmLcAEDBRTEh6sVhSD-xrpMF_lQ99lXXJkvvnenvknny3NXODDWG5H7XYlOZmLz1g91dkjOPdXRXxz0lH6vl--IxXb8-PC3m6xQ5k33KjRdgVK6slVAwVlrMJBPSYkkZK4RlSpUiZxY9ohonZ0b6jJa5VDZjnk_JzeHvNnTfg4u9bqpoXD3Wdd0QNcszykGogo9RcYia0MUYnNfbUDUYdpqC3nvSoyf950kfPY0YHLD9ddMNoR37_I_8AnzUbi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861304793</pqid></control><display><type>article</type><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</creator><creatorcontrib>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</creatorcontrib><description>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c00755</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Langmuir, 2023-09, Vol.39 (37), p.12975-12986</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</citedby><cites>FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</cites><orcidid>0000-0001-9794-0602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Li, Mingzhi</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Song, Jiangbao</creatorcontrib><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOw0AQRVcIJELgDyhc0jjMvrw2XRQSQApQAKJcjfeBHPkRdm2k_D2OElqmmWLuGekeQq4pzCgweosmzmpsv5qhCjNuAJSUJ2RCJYNU5kydkgkowVMlMn5OLmLcAEDBRTEh6sVhSD-xrpMF_lQ99lXXJkvvnenvknny3NXODDWG5H7XYlOZmLz1g91dkjOPdXRXxz0lH6vl--IxXb8-PC3m6xQ5k33KjRdgVK6slVAwVlrMJBPSYkkZK4RlSpUiZxY9ohonZ0b6jJa5VDZjnk_JzeHvNnTfg4u9bqpoXD3Wdd0QNcszykGogo9RcYia0MUYnNfbUDUYdpqC3nvSoyf950kfPY0YHLD9ddMNoR37_I_8AnzUbi4</recordid><startdate>20230919</startdate><enddate>20230919</enddate><creator>Zhang, Dongwei</creator><creator>Guan, Jian</creator><creator>Li, Mingzhi</creator><creator>Chen, Songxuan</creator><creator>Tang, Songzhen</creator><creator>Ha, Xiaoliang</creator><creator>Song, Jiangbao</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid></search><sort><creationdate>20230919</creationdate><title>Near-Wall Cavitation Effect: A Molecular Dynamics Study</title><author>Zhang, Dongwei ; Guan, Jian ; Li, Mingzhi ; Chen, Songxuan ; Tang, Songzhen ; Ha, Xiaoliang ; Song, Jiangbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dongwei</creatorcontrib><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Li, Mingzhi</creatorcontrib><creatorcontrib>Chen, Songxuan</creatorcontrib><creatorcontrib>Tang, Songzhen</creatorcontrib><creatorcontrib>Ha, Xiaoliang</creatorcontrib><creatorcontrib>Song, Jiangbao</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dongwei</au><au>Guan, Jian</au><au>Li, Mingzhi</au><au>Chen, Songxuan</au><au>Tang, Songzhen</au><au>Ha, Xiaoliang</au><au>Song, Jiangbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-Wall Cavitation Effect: A Molecular Dynamics Study</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-09-19</date><risdate>2023</risdate><volume>39</volume><issue>37</issue><spage>12975</spage><epage>12986</epage><pages>12975-12986</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Cavitation has been the subject of abundant studies, but the internal mechanism of cavitation is less well known. In this article, a microlevel near-wall model was established by using LAMMPS to present the process of cavitation effect. The results of molecular dynamics simulation revealed the fluctuation process of the liquid near the wall with the change in pressure. Molecular dynamics was also used to evaluate the void volume fraction and density distribution of the system. The results exhibited that the cavitation process can be divided into two stages: the initial cavitation stage and the rapid growth stage. Based on these results, the effects of wettability and initial system temperature on the near-wall cavitation effect were demonstrated. The results indicated that the hydrophobic near-wall forms a gas layer to weaken the density fluctuation, while the hydrophilic wall is opposite. Increasing the temperature could positively affect molecular motion and cavitation. This work provides a theoretical basis for further exploration of the cavitation effect.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.langmuir.3c00755</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9794-0602</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2023-09, Vol.39 (37), p.12975-12986
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2861304793
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Near-Wall Cavitation Effect: A Molecular Dynamics Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A21%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-Wall%20Cavitation%20Effect:%20A%20Molecular%20Dynamics%20Study&rft.jtitle=Langmuir&rft.au=Zhang,%20Dongwei&rft.date=2023-09-19&rft.volume=39&rft.issue=37&rft.spage=12975&rft.epage=12986&rft.pages=12975-12986&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c00755&rft_dat=%3Cproquest_cross%3E2861304793%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a325t-3cf40c787dd50922bda65245dab12294d277b482dafaa777782c5f61b857d62f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861304793&rft_id=info:pmid/&rfr_iscdi=true