Loading…

Room-Temperature, Multigram-Scale Synthesis and Conversion Mechanism of Highly Luminescent Lead Sulfide Quantum Dots

PbS quantum dots (QDs) are attractive near-infrared (NIR) materials, but traditional synthetic methods require inert atmosphere and/or high temperature. Herein we develop a facile, room-temperature synthetic route for in situ halide passivated PbS QDs through controllable reactions between lead hali...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters 2023-09, Vol.14 (36), p.8129-8137
Main Authors: Jia, Zhen, Dai, Yu, Shao, Haoyun, Xu, Jingyi, Meng, Qingyu, Qiao, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:PbS quantum dots (QDs) are attractive near-infrared (NIR) materials, but traditional synthetic methods require inert atmosphere and/or high temperature. Herein we develop a facile, room-temperature synthetic route for in situ halide passivated PbS QDs through controllable reactions between lead halide, N,N′-diphenyl thiourea, and oleyamine (OLA) in toluene. Contrast experiments and theoretical calculations reveal that the OLA plays a bifunctional role as a mild base to initiate the formation of PbS monomers and as a dynamic ligand to control the crystallization of PbS QDs and further ligand exchange. The oleic acid-capped PbS QDs exhibit high photoluminescence quantum yields up to 45%. The scaled-up synthesis on multigram scales shows great batch-to-batch consistency. We further demonstrate high-power NIR light-emitting diodes using the PbS QDs as color converters, delivering NIR optical power of 9.2 mW at 160 mA. This work provides a simple and versatile synthetic route for high-quality PbS QDs and boosts the applications of NIR materials.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.3c02005