Loading…

Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling

Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical information and modeling 2023-09, Vol.63 (18), p.5794-5802
Main Authors: Axelrod, Simon, Shakhnovich, Eugene, Gómez-Bombarelli, Rafael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23
container_end_page 5802
container_issue 18
container_start_page 5794
container_title Journal of chemical information and modeling
container_volume 63
creator Axelrod, Simon
Shakhnovich, Eugene
Gómez-Bombarelli, Rafael
description Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.
doi_str_mv 10.1021/acs.jcim.3c00484
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYsouK7ePQa8eLBrvpqmR1n8ghUXVPBW0iRts7RNbVLE_97sdvciyMDMwPvNY3hRdIngAkGMboV0i4007YJICCmnR9EMJTSLMwY_jw97krHT6My5DYSEZAzPIvUi-t50FfC1Bm-9kBrYEqxr6637Nl7Womg0WJlKdMqB0CZNDWNV7aT1YL02nQOBrsHStv3ohTe2Ew14sUo3wfw8OilF4_TFfs6jj4f79-VTvHp9fF7erWKBM-pjWaZQl6qQXLCEC84oloVIiCxQiRLFFE6pkLAkEqVZAqGCMmWY8FIpQnmByTy6nnz7wX6N2vm8NU7qphGdtqPLMWeIUZrRJKBXf9CNHYfw9I7KQmFOAgUnSg7WuUGXeT-YVgw_OYL5NvY8xJ5vY8_3sYeTm-lkpxw8_8V_AWaVh58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869696283</pqid></control><display><type>article</type><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</creator><creatorcontrib>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</creatorcontrib><description>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00484</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Azo compounds ; Biological activity ; Biological properties ; Computational Chemistry ; Design optimization ; Drugs ; Ligands ; Machine learning ; Near infrared radiation ; Proteins ; Quantum chemistry ; Side effects</subject><ispartof>Journal of chemical information and modeling, 2023-09, Vol.63 (18), p.5794-5802</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 25, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</cites><orcidid>0000-0003-2936-0133 ; 0000-0002-4769-2265 ; 0000-0002-9495-8599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Shakhnovich, Eugene</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</description><subject>Azo compounds</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Computational Chemistry</subject><subject>Design optimization</subject><subject>Drugs</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Near infrared radiation</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Side effects</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYsouK7ePQa8eLBrvpqmR1n8ghUXVPBW0iRts7RNbVLE_97sdvciyMDMwPvNY3hRdIngAkGMboV0i4007YJICCmnR9EMJTSLMwY_jw97krHT6My5DYSEZAzPIvUi-t50FfC1Bm-9kBrYEqxr6637Nl7Womg0WJlKdMqB0CZNDWNV7aT1YL02nQOBrsHStv3ohTe2Ew14sUo3wfw8OilF4_TFfs6jj4f79-VTvHp9fF7erWKBM-pjWaZQl6qQXLCEC84oloVIiCxQiRLFFE6pkLAkEqVZAqGCMmWY8FIpQnmByTy6nnz7wX6N2vm8NU7qphGdtqPLMWeIUZrRJKBXf9CNHYfw9I7KQmFOAgUnSg7WuUGXeT-YVgw_OYL5NvY8xJ5vY8_3sYeTm-lkpxw8_8V_AWaVh58</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Axelrod, Simon</creator><creator>Shakhnovich, Eugene</creator><creator>Gómez-Bombarelli, Rafael</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0000-0002-4769-2265</orcidid><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid></search><sort><creationdate>20230925</creationdate><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><author>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Computational Chemistry</topic><topic>Design optimization</topic><topic>Drugs</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Near infrared radiation</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Shakhnovich, Eugene</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axelrod, Simon</au><au>Shakhnovich, Eugene</au><au>Gómez-Bombarelli, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-09-25</date><risdate>2023</risdate><volume>63</volume><issue>18</issue><spage>5794</spage><epage>5802</epage><pages>5794-5802</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.3c00484</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0000-0002-4769-2265</orcidid><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2023-09, Vol.63 (18), p.5794-5802
issn 1549-9596
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2861644945
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Azo compounds
Biological activity
Biological properties
Computational Chemistry
Design optimization
Drugs
Ligands
Machine learning
Near infrared radiation
Proteins
Quantum chemistry
Side effects
title Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Space%20of%20Photoswitchable%20Ligands%20and%20Photodruggable%20Proteins%20with%20Computational%20Modeling&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Axelrod,%20Simon&rft.date=2023-09-25&rft.volume=63&rft.issue=18&rft.spage=5794&rft.epage=5802&rft.pages=5794-5802&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00484&rft_dat=%3Cproquest_cross%3E2861644945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869696283&rft_id=info:pmid/&rfr_iscdi=true