Loading…
Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling
Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a p...
Saved in:
Published in: | Journal of chemical information and modeling 2023-09, Vol.63 (18), p.5794-5802 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23 |
container_end_page | 5802 |
container_issue | 18 |
container_start_page | 5794 |
container_title | Journal of chemical information and modeling |
container_volume | 63 |
creator | Axelrod, Simon Shakhnovich, Eugene Gómez-Bombarelli, Rafael |
description | Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window. |
doi_str_mv | 10.1021/acs.jcim.3c00484 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2861644945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2861644945</sourcerecordid><originalsourceid>FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</originalsourceid><addsrcrecordid>eNp1kM1LxDAQxYsouK7ePQa8eLBrvpqmR1n8ghUXVPBW0iRts7RNbVLE_97sdvciyMDMwPvNY3hRdIngAkGMboV0i4007YJICCmnR9EMJTSLMwY_jw97krHT6My5DYSEZAzPIvUi-t50FfC1Bm-9kBrYEqxr6637Nl7Womg0WJlKdMqB0CZNDWNV7aT1YL02nQOBrsHStv3ohTe2Ew14sUo3wfw8OilF4_TFfs6jj4f79-VTvHp9fF7erWKBM-pjWaZQl6qQXLCEC84oloVIiCxQiRLFFE6pkLAkEqVZAqGCMmWY8FIpQnmByTy6nnz7wX6N2vm8NU7qphGdtqPLMWeIUZrRJKBXf9CNHYfw9I7KQmFOAgUnSg7WuUGXeT-YVgw_OYL5NvY8xJ5vY8_3sYeTm-lkpxw8_8V_AWaVh58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869696283</pqid></control><display><type>article</type><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</creator><creatorcontrib>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</creatorcontrib><description>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</description><identifier>ISSN: 1549-9596</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.3c00484</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Azo compounds ; Biological activity ; Biological properties ; Computational Chemistry ; Design optimization ; Drugs ; Ligands ; Machine learning ; Near infrared radiation ; Proteins ; Quantum chemistry ; Side effects</subject><ispartof>Journal of chemical information and modeling, 2023-09, Vol.63 (18), p.5794-5802</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Sep 25, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</cites><orcidid>0000-0003-2936-0133 ; 0000-0002-4769-2265 ; 0000-0002-9495-8599</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Shakhnovich, Eugene</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</description><subject>Azo compounds</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Computational Chemistry</subject><subject>Design optimization</subject><subject>Drugs</subject><subject>Ligands</subject><subject>Machine learning</subject><subject>Near infrared radiation</subject><subject>Proteins</subject><subject>Quantum chemistry</subject><subject>Side effects</subject><issn>1549-9596</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAQxYsouK7ePQa8eLBrvpqmR1n8ghUXVPBW0iRts7RNbVLE_97sdvciyMDMwPvNY3hRdIngAkGMboV0i4007YJICCmnR9EMJTSLMwY_jw97krHT6My5DYSEZAzPIvUi-t50FfC1Bm-9kBrYEqxr6637Nl7Womg0WJlKdMqB0CZNDWNV7aT1YL02nQOBrsHStv3ohTe2Ew14sUo3wfw8OilF4_TFfs6jj4f79-VTvHp9fF7erWKBM-pjWaZQl6qQXLCEC84oloVIiCxQiRLFFE6pkLAkEqVZAqGCMmWY8FIpQnmByTy6nnz7wX6N2vm8NU7qphGdtqPLMWeIUZrRJKBXf9CNHYfw9I7KQmFOAgUnSg7WuUGXeT-YVgw_OYL5NvY8xJ5vY8_3sYeTm-lkpxw8_8V_AWaVh58</recordid><startdate>20230925</startdate><enddate>20230925</enddate><creator>Axelrod, Simon</creator><creator>Shakhnovich, Eugene</creator><creator>Gómez-Bombarelli, Rafael</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0000-0002-4769-2265</orcidid><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid></search><sort><creationdate>20230925</creationdate><title>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</title><author>Axelrod, Simon ; Shakhnovich, Eugene ; Gómez-Bombarelli, Rafael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Computational Chemistry</topic><topic>Design optimization</topic><topic>Drugs</topic><topic>Ligands</topic><topic>Machine learning</topic><topic>Near infrared radiation</topic><topic>Proteins</topic><topic>Quantum chemistry</topic><topic>Side effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axelrod, Simon</creatorcontrib><creatorcontrib>Shakhnovich, Eugene</creatorcontrib><creatorcontrib>Gómez-Bombarelli, Rafael</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axelrod, Simon</au><au>Shakhnovich, Eugene</au><au>Gómez-Bombarelli, Rafael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2023-09-25</date><risdate>2023</risdate><volume>63</volume><issue>18</issue><spage>5794</spage><epage>5802</epage><pages>5794-5802</pages><issn>1549-9596</issn><eissn>1549-960X</eissn><abstract>Light-activated drugs are a promising way to localize biological activity and minimize side effects. However, their development is complicated by the numerous photophysical and biological properties that must be simultaneously optimized. To accelerate the design of photoactive drugs, we describe a procedure that combines ligand–protein docking with chemical property prediction based on machine learning (ML). We apply this procedure to 58 proteins and 9000 photo-drug candidates based on azobenzene cis–trans isomerism. We find that most proteins display a preference for trans isomers over cis and that the binding affinities of nominally active/inactive pairs are in fact highly correlated. These findings have significant value for photopharmacology research, and reinforce the need for virtual screening to identify compounds with rare desirable properties. Further, we combine our procedure with quantum chemical validation to identify promising candidates for the photoactive inhibition of PARP1, an enzyme that is over-expressed in cancer cells. The top compounds are predicted to have long-lived active forms, differential bioactivity, and absorption in the near-infrared therapeutic window.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jcim.3c00484</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2936-0133</orcidid><orcidid>https://orcid.org/0000-0002-4769-2265</orcidid><orcidid>https://orcid.org/0000-0002-9495-8599</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2023-09, Vol.63 (18), p.5794-5802 |
issn | 1549-9596 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2861644945 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Azo compounds Biological activity Biological properties Computational Chemistry Design optimization Drugs Ligands Machine learning Near infrared radiation Proteins Quantum chemistry Side effects |
title | Mapping the Space of Photoswitchable Ligands and Photodruggable Proteins with Computational Modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Space%20of%20Photoswitchable%20Ligands%20and%20Photodruggable%20Proteins%20with%20Computational%20Modeling&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Axelrod,%20Simon&rft.date=2023-09-25&rft.volume=63&rft.issue=18&rft.spage=5794&rft.epage=5802&rft.pages=5794-5802&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.3c00484&rft_dat=%3Cproquest_cross%3E2861644945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a294t-cf70efdbc8a658a8642cba53cb1f15d6d274ac0f3c179500d0c76238fdd348b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869696283&rft_id=info:pmid/&rfr_iscdi=true |