Loading…

Sliding mode measurement feedback control for antilock braking systems

We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on control systems technology 1999-03, Vol.7 (2), p.271-281
Main Authors: Unsal, C., Kachroo, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23
cites cdi_FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23
container_end_page 281
container_issue 2
container_start_page 271
container_title IEEE transactions on control systems technology
container_volume 7
creator Unsal, C.
Kachroo, P.
description We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road conditions.
doi_str_mv 10.1109/87.748153
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28616535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>748153</ieee_id><sourcerecordid>29044120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23</originalsourceid><addsrcrecordid>eNqFkLtPwzAQxi0EEuUxsDJlQCCGFDt-xSOqKCBVYgDmyI8zCk3iYqdD_3tctYINpjvd_b7vdB9CFwRPCcHqrpZTyWrC6QGaEM7rEteCH-YeC1oKTsUxOknpE2PCeCUnaP7ata4dPoo-OCh60GkdoYdhLDyAM9ouCxuGMYau8CEWehjbLuShiXq5laVNGqFPZ-jI6y7B-b6eovf5w9vsqVy8PD7P7helpUKNpWakploZY20lK2Kx5_mEdd45qhwQa8BL7CU4KhlThGnpjONgjRdgfEVP0c3OdxXD1xrS2PRtstB1eoCwTo0iSuW3Jcvk9Z9kpTBjpML_g7UgOTiewdsdaGNIKYJvVrHtddw0BDfb8JtaNrvwM3u1N9XJ6s5HPdg2_QpkxQUnGbvcYS0A_Gz3Ht8o0o1C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28616535</pqid></control><display><type>article</type><title>Sliding mode measurement feedback control for antilock braking systems</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Unsal, C. ; Kachroo, P.</creator><creatorcontrib>Unsal, C. ; Kachroo, P.</creatorcontrib><description>We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road conditions.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/87.748153</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Automotive wheels ; Computer science; control theory; systems ; Computer simulation ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology ; Extended Kalman filter ; Feedback control ; Mathematical models ; Motion control ; Nonlinearity ; Observers ; Robust control ; Sliding mode control ; State estimation ; State feedback ; Traction ; Vehicle safety ; Vehicles ; Wheels</subject><ispartof>IEEE transactions on control systems technology, 1999-03, Vol.7 (2), p.271-281</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23</citedby><cites>FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/748153$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1725651$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Unsal, C.</creatorcontrib><creatorcontrib>Kachroo, P.</creatorcontrib><title>Sliding mode measurement feedback control for antilock braking systems</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road conditions.</description><subject>Applied sciences</subject><subject>Automotive wheels</subject><subject>Computer science; control theory; systems</subject><subject>Computer simulation</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><subject>Extended Kalman filter</subject><subject>Feedback control</subject><subject>Mathematical models</subject><subject>Motion control</subject><subject>Nonlinearity</subject><subject>Observers</subject><subject>Robust control</subject><subject>Sliding mode control</subject><subject>State estimation</subject><subject>State feedback</subject><subject>Traction</subject><subject>Vehicle safety</subject><subject>Vehicles</subject><subject>Wheels</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkLtPwzAQxi0EEuUxsDJlQCCGFDt-xSOqKCBVYgDmyI8zCk3iYqdD_3tctYINpjvd_b7vdB9CFwRPCcHqrpZTyWrC6QGaEM7rEteCH-YeC1oKTsUxOknpE2PCeCUnaP7ata4dPoo-OCh60GkdoYdhLDyAM9ouCxuGMYau8CEWehjbLuShiXq5laVNGqFPZ-jI6y7B-b6eovf5w9vsqVy8PD7P7helpUKNpWakploZY20lK2Kx5_mEdd45qhwQa8BL7CU4KhlThGnpjONgjRdgfEVP0c3OdxXD1xrS2PRtstB1eoCwTo0iSuW3Jcvk9Z9kpTBjpML_g7UgOTiewdsdaGNIKYJvVrHtddw0BDfb8JtaNrvwM3u1N9XJ6s5HPdg2_QpkxQUnGbvcYS0A_Gz3Ht8o0o1C</recordid><startdate>19990301</startdate><enddate>19990301</enddate><creator>Unsal, C.</creator><creator>Kachroo, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>H8D</scope><scope>F28</scope></search><sort><creationdate>19990301</creationdate><title>Sliding mode measurement feedback control for antilock braking systems</title><author>Unsal, C. ; Kachroo, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Applied sciences</topic><topic>Automotive wheels</topic><topic>Computer science; control theory; systems</topic><topic>Computer simulation</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><topic>Extended Kalman filter</topic><topic>Feedback control</topic><topic>Mathematical models</topic><topic>Motion control</topic><topic>Nonlinearity</topic><topic>Observers</topic><topic>Robust control</topic><topic>Sliding mode control</topic><topic>State estimation</topic><topic>State feedback</topic><topic>Traction</topic><topic>Vehicle safety</topic><topic>Vehicles</topic><topic>Wheels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unsal, C.</creatorcontrib><creatorcontrib>Kachroo, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Aerospace Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unsal, C.</au><au>Kachroo, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sliding mode measurement feedback control for antilock braking systems</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>1999-03-01</date><risdate>1999</risdate><volume>7</volume><issue>2</issue><spage>271</spage><epage>281</epage><pages>271-281</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>We describe a nonlinear observer-based design for control of vehicle traction that is important in providing safety and obtaining desired longitudinal vehicle motion. First, a robust sliding mode controller is designed to maintain the wheel slip at any given value. Simulations show that longitudinal traction controller is capable of controlling the vehicle with parameter deviations and disturbances. The direct state feedback is then replaced with nonlinear observers to estimate the vehicle velocity from the output of the system (i.e., wheel velocity). The nonlinear model of the system is shown locally observable. The effects and drawbacks of the extended Kalman filters and sliding observers are shown via simulations. The sliding observer is found promising while the extended Kalman filter is unsatisfactory due to unpredictable changes in the road conditions.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/87.748153</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 1999-03, Vol.7 (2), p.271-281
issn 1063-6536
1558-0865
language eng
recordid cdi_proquest_miscellaneous_28616535
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Automotive wheels
Computer science
control theory
systems
Computer simulation
Control system synthesis
Control theory. Systems
Exact sciences and technology
Extended Kalman filter
Feedback control
Mathematical models
Motion control
Nonlinearity
Observers
Robust control
Sliding mode control
State estimation
State feedback
Traction
Vehicle safety
Vehicles
Wheels
title Sliding mode measurement feedback control for antilock braking systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sliding%20mode%20measurement%20feedback%20control%20for%20antilock%20braking%20systems&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Unsal,%20C.&rft.date=1999-03-01&rft.volume=7&rft.issue=2&rft.spage=271&rft.epage=281&rft.pages=271-281&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/87.748153&rft_dat=%3Cproquest_cross%3E29044120%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-a4183a9bbcc2721c0f5baccdfdd39de1cbef70f7ed3744914a7dbd5ecbf6ebf23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28616535&rft_id=info:pmid/&rft_ieee_id=748153&rfr_iscdi=true