Loading…

Shape from moments - an estimation theory perspective

This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process an...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2004-07, Vol.52 (7), p.1814-1829
Main Authors: Elad, M., Milanfar, P., Golub, G.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073
cites cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073
container_end_page 1829
container_issue 7
container_start_page 1814
container_title IEEE transactions on signal processing
container_volume 52
creator Elad, M.
Milanfar, P.
Golub, G.H.
description This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.
doi_str_mv 10.1109/TSP.2004.828919
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28616953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1306639</ieee_id><sourcerecordid>2426394681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</originalsourceid><addsrcrecordid>eNp9kMtLAzEQh4MoWKtnD14WQT1tO3lucpTiCwoKreAtpNtZuqX7MNkK_e9N2ULBg6cZmO83zHyEXFMYUQpmPJ99jBiAGGmmDTUnZECNoCmITJ3GHiRPpc6-zslFCGsAKoRRAyJnK9diUvimSqqmwroLSZq4OsHQlZXryqZOuhU2fpe06EOLeVf-4CU5K9wm4NWhDsnn89N88ppO31_eJo_TNOeZ6dIMCo1LChrQUaq5ErwAXAjBMl04tpQMAXK21KAp5cItIooqzpRTWkLGh-Sh39v65nsbT7JVGXLcbFyNzTZYA1Qp0MxE8v5fkmlFlZE8grd_wHWz9XX8wmrNoyFge2jcQ7lvQvBY2NZHG35nKdi9bRtt271t29uOibvDWhdytym8q_MyHGNSKymFitxNz5WIeBxzUIob_gssjoVK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883587023</pqid></control><display><type>article</type><title>Shape from moments - an estimation theory perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Elad, M. ; Milanfar, P. ; Golub, G.H.</creator><creatorcontrib>Elad, M. ; Milanfar, P. ; Golub, G.H.</creatorcontrib><description>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.828919</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Arrays ; Computer science ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; Eigenvalues and eigenfunctions ; Estimation theory ; Estimators ; Exact sciences and technology ; Information, signal and communications theory ; Inverse problems ; Noise shaping ; Pencils ; Polygons ; Recovering ; Regularization ; Shape ; Signal and communications theory ; Signal processing ; Signal, noise ; Simulation ; Studies ; Sufficient conditions ; System identification ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1814-1829</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</citedby><cites>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1306639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15865546$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elad, M.</creatorcontrib><creatorcontrib>Milanfar, P.</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><title>Shape from moments - an estimation theory perspective</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Computer science</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Inverse problems</subject><subject>Noise shaping</subject><subject>Pencils</subject><subject>Polygons</subject><subject>Recovering</subject><subject>Regularization</subject><subject>Shape</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Simulation</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>System identification</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQh4MoWKtnD14WQT1tO3lucpTiCwoKreAtpNtZuqX7MNkK_e9N2ULBg6cZmO83zHyEXFMYUQpmPJ99jBiAGGmmDTUnZECNoCmITJ3GHiRPpc6-zslFCGsAKoRRAyJnK9diUvimSqqmwroLSZq4OsHQlZXryqZOuhU2fpe06EOLeVf-4CU5K9wm4NWhDsnn89N88ppO31_eJo_TNOeZ6dIMCo1LChrQUaq5ErwAXAjBMl04tpQMAXK21KAp5cItIooqzpRTWkLGh-Sh39v65nsbT7JVGXLcbFyNzTZYA1Qp0MxE8v5fkmlFlZE8grd_wHWz9XX8wmrNoyFge2jcQ7lvQvBY2NZHG35nKdi9bRtt271t29uOibvDWhdytym8q_MyHGNSKymFitxNz5WIeBxzUIob_gssjoVK</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Elad, M.</creator><creator>Milanfar, P.</creator><creator>Golub, G.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040701</creationdate><title>Shape from moments - an estimation theory perspective</title><author>Elad, M. ; Milanfar, P. ; Golub, G.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Computer science</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Inverse problems</topic><topic>Noise shaping</topic><topic>Pencils</topic><topic>Polygons</topic><topic>Recovering</topic><topic>Regularization</topic><topic>Shape</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Simulation</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>System identification</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elad, M.</creatorcontrib><creatorcontrib>Milanfar, P.</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elad, M.</au><au>Milanfar, P.</au><au>Golub, G.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape from moments - an estimation theory perspective</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>7</issue><spage>1814</spage><epage>1829</epage><pages>1814-1829</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.828919</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1814-1829
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_28616953
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Array signal processing
Arrays
Computer science
Detection, estimation, filtering, equalization, prediction
Direction of arrival estimation
Eigenvalues and eigenfunctions
Estimation theory
Estimators
Exact sciences and technology
Information, signal and communications theory
Inverse problems
Noise shaping
Pencils
Polygons
Recovering
Regularization
Shape
Signal and communications theory
Signal processing
Signal, noise
Simulation
Studies
Sufficient conditions
System identification
Telecommunications and information theory
title Shape from moments - an estimation theory perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20from%20moments%20-%20an%20estimation%20theory%20perspective&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Elad,%20M.&rft.date=2004-07-01&rft.volume=52&rft.issue=7&rft.spage=1814&rft.epage=1829&rft.pages=1814-1829&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.828919&rft_dat=%3Cproquest_pasca%3E2426394681%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883587023&rft_id=info:pmid/&rft_ieee_id=1306639&rfr_iscdi=true