Loading…
Shape from moments - an estimation theory perspective
This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process an...
Saved in:
Published in: | IEEE transactions on signal processing 2004-07, Vol.52 (7), p.1814-1829 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073 |
container_end_page | 1829 |
container_issue | 7 |
container_start_page | 1814 |
container_title | IEEE transactions on signal processing |
container_volume | 52 |
creator | Elad, M. Milanfar, P. Golub, G.H. |
description | This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon. |
doi_str_mv | 10.1109/TSP.2004.828919 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28616953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1306639</ieee_id><sourcerecordid>2426394681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</originalsourceid><addsrcrecordid>eNp9kMtLAzEQh4MoWKtnD14WQT1tO3lucpTiCwoKreAtpNtZuqX7MNkK_e9N2ULBg6cZmO83zHyEXFMYUQpmPJ99jBiAGGmmDTUnZECNoCmITJ3GHiRPpc6-zslFCGsAKoRRAyJnK9diUvimSqqmwroLSZq4OsHQlZXryqZOuhU2fpe06EOLeVf-4CU5K9wm4NWhDsnn89N88ppO31_eJo_TNOeZ6dIMCo1LChrQUaq5ErwAXAjBMl04tpQMAXK21KAp5cItIooqzpRTWkLGh-Sh39v65nsbT7JVGXLcbFyNzTZYA1Qp0MxE8v5fkmlFlZE8grd_wHWz9XX8wmrNoyFge2jcQ7lvQvBY2NZHG35nKdi9bRtt271t29uOibvDWhdytym8q_MyHGNSKymFitxNz5WIeBxzUIob_gssjoVK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>883587023</pqid></control><display><type>article</type><title>Shape from moments - an estimation theory perspective</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Elad, M. ; Milanfar, P. ; Golub, G.H.</creator><creatorcontrib>Elad, M. ; Milanfar, P. ; Golub, G.H.</creatorcontrib><description>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2004.828919</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Array signal processing ; Arrays ; Computer science ; Detection, estimation, filtering, equalization, prediction ; Direction of arrival estimation ; Eigenvalues and eigenfunctions ; Estimation theory ; Estimators ; Exact sciences and technology ; Information, signal and communications theory ; Inverse problems ; Noise shaping ; Pencils ; Polygons ; Recovering ; Regularization ; Shape ; Signal and communications theory ; Signal processing ; Signal, noise ; Simulation ; Studies ; Sufficient conditions ; System identification ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1814-1829</ispartof><rights>2004 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</citedby><cites>FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1306639$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15865546$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Elad, M.</creatorcontrib><creatorcontrib>Milanfar, P.</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><title>Shape from moments - an estimation theory perspective</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</description><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Arrays</subject><subject>Computer science</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Direction of arrival estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Inverse problems</subject><subject>Noise shaping</subject><subject>Pencils</subject><subject>Polygons</subject><subject>Recovering</subject><subject>Regularization</subject><subject>Shape</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Simulation</subject><subject>Studies</subject><subject>Sufficient conditions</subject><subject>System identification</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQh4MoWKtnD14WQT1tO3lucpTiCwoKreAtpNtZuqX7MNkK_e9N2ULBg6cZmO83zHyEXFMYUQpmPJ99jBiAGGmmDTUnZECNoCmITJ3GHiRPpc6-zslFCGsAKoRRAyJnK9diUvimSqqmwroLSZq4OsHQlZXryqZOuhU2fpe06EOLeVf-4CU5K9wm4NWhDsnn89N88ppO31_eJo_TNOeZ6dIMCo1LChrQUaq5ErwAXAjBMl04tpQMAXK21KAp5cItIooqzpRTWkLGh-Sh39v65nsbT7JVGXLcbFyNzTZYA1Qp0MxE8v5fkmlFlZE8grd_wHWz9XX8wmrNoyFge2jcQ7lvQvBY2NZHG35nKdi9bRtt271t29uOibvDWhdytym8q_MyHGNSKymFitxNz5WIeBxzUIob_gssjoVK</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Elad, M.</creator><creator>Milanfar, P.</creator><creator>Golub, G.H.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040701</creationdate><title>Shape from moments - an estimation theory perspective</title><author>Elad, M. ; Milanfar, P. ; Golub, G.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Arrays</topic><topic>Computer science</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Direction of arrival estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Inverse problems</topic><topic>Noise shaping</topic><topic>Pencils</topic><topic>Polygons</topic><topic>Recovering</topic><topic>Regularization</topic><topic>Shape</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Simulation</topic><topic>Studies</topic><topic>Sufficient conditions</topic><topic>System identification</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elad, M.</creatorcontrib><creatorcontrib>Milanfar, P.</creatorcontrib><creatorcontrib>Golub, G.H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elad, M.</au><au>Milanfar, P.</au><au>Golub, G.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape from moments - an estimation theory perspective</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2004-07-01</date><risdate>2004</risdate><volume>52</volume><issue>7</issue><spage>1814</spage><epage>1829</epage><pages>1814-1829</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper discusses the problem of recovering a planar polygon from its measured complex moments. These moments correspond to an indicator function defined over the polygon's support. Previous work on this problem gave necessary and sufficient conditions for such successful recovery process and focused mainly on the case of exact measurements being given. In this paper, we extend these results and treat the same problem in the case where a longer than necessary series of noise corrupted moments is given. Similar to methods found in array processing, system identification, and signal processing, we discuss a set of possible estimation procedures that are based on the Prony and the Pencil methods, relate them one to the other, and compare them through simulations. We then present an improvement over these methods based on the direct use of the maximum-likelihood estimator, exploiting the above methods as initialization. Finally, we show how regularization and, thus, maximum a posteriori probability estimator could be applied to reflect prior knowledge about the recovered polygon.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2004.828919</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2004-07, Vol.52 (7), p.1814-1829 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_28616953 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Applied sciences Array signal processing Arrays Computer science Detection, estimation, filtering, equalization, prediction Direction of arrival estimation Eigenvalues and eigenfunctions Estimation theory Estimators Exact sciences and technology Information, signal and communications theory Inverse problems Noise shaping Pencils Polygons Recovering Regularization Shape Signal and communications theory Signal processing Signal, noise Simulation Studies Sufficient conditions System identification Telecommunications and information theory |
title | Shape from moments - an estimation theory perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A03%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape%20from%20moments%20-%20an%20estimation%20theory%20perspective&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Elad,%20M.&rft.date=2004-07-01&rft.volume=52&rft.issue=7&rft.spage=1814&rft.epage=1829&rft.pages=1814-1829&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2004.828919&rft_dat=%3Cproquest_pasca%3E2426394681%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-70f8ed1080ea1183643f0eb44278fa2d52e00c2d8081134ab108e678f6a685073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=883587023&rft_id=info:pmid/&rft_ieee_id=1306639&rfr_iscdi=true |