Loading…

Estimating the exposure-response function between long-term ozone exposure and under-5 mortality in 55 low-income and middle-income countries: a retrospective, multicentre, epidemiological study

In 2021, WHO suggested new target concentration limits for long-term exposure to ambient ozone. However, the harmful effects of ozone on vulnerable children have not been sufficiently studied. We aimed to evaluate the association between long-term ozone exposure and mortality in children younger tha...

Full description

Saved in:
Bibliographic Details
Published in:The Lancet. Planetary health 2023-09, Vol.7 (9), p.e736-e746
Main Authors: Xue, Tao, Wang, Ruohan, Tong, Mingkun, Kelly, Frank J, Liu, Hengyi, Li, Jiajianghui, Li, Pengfei, Qiu, Xinghua, Gong, Jicheng, Shang, Jing, Zhu, Tong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 2021, WHO suggested new target concentration limits for long-term exposure to ambient ozone. However, the harmful effects of ozone on vulnerable children have not been sufficiently studied. We aimed to evaluate the association between long-term ozone exposure and mortality in children younger than 5 years (hereafter denoted under-5 mortality) in low-income and middle-income countries (LMICs) and to estimate this mortality burden for 97 LMICs. By combining information from 128 Demographic and Health Surveys, we evaluated the association between the survival status of more than 1·2 million children younger than 5 years from 2457 sampling strata in 55 LMICs and the average peak-season ozone concentration during the life course, using a fixed-effects Cox model. A non-linear exposure-response function was developed by integrating the marginal effects of within-strata variation in exposure. We extrapolated the function obtained from the 55 LMICs to estimate the under-5 mortality burden attributable to ozone exposure in 97 LMICs, in which more than 95% of global deaths in this age group occur. The fixed-effects model showed a robust association between ozone and under-5 mortality. According to the fully adjusted linear model, an increment of 10 ppb in the life-course average peak-season ozone concentration was associated with a 6·4% (95% CI 2·4-10·7) increase in the risk of under-5 mortality. The non-linear exposure-response function showed a sublinear curvature with a threshold, suggesting that the effect of ozone exposure was non-significant at concentrations lower than the first-stage interim target (100 μg/m ) recommended by WHO. Using this function, we estimate that, in 2010, long-term ozone exposure contributed to 153 361 (95% CI 17 077-276 768; 2·3% [0·3-4·1]) deaths of children younger than 5 years in 97 LMICs, which is equivalent to 56·8% of all ozone-related deaths in adults (269 785) in these countries. From 2003 to 2017, the ozone-related under-5 mortality burden decreased in most of the 97 LMICs. Long-term exposure to ozone concentrations higher than the WHO first-stage interim target is a risk factor for under-5 mortality, and ozone exposure contributes substantially to mortality in this age group in LMICs. Increased efforts should be made to control ambient ozone pollution as this will lead to positive health benefits. Ministry of Science and Technology of the People's Republic of China and China National Natural Science Foundation.
ISSN:2542-5196
2542-5196
DOI:10.1016/S2542-5196(23)00165-1