Loading…
Set-membership identification of systems with parametric and nonparametric uncertainty
A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic distu...
Saved in:
Published in: | IEEE transactions on automatic control 1992-07, Vol.37 (7), p.929-941 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3 |
container_end_page | 941 |
container_issue | 7 |
container_start_page | 929 |
container_title | IEEE transactions on automatic control |
container_volume | 37 |
creator | Kosut, R.L. Lau, M.K. Boyd, S.P. |
description | A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.< > |
doi_str_mv | 10.1109/9.148345 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28623301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>148345</ieee_id><sourcerecordid>25886119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq6r4NlTT-KlayaPNjnK4gsWPPi4ljSdspFtWpMsst_eLhX0tqf_PH7MZQi5BLoAoPpWL0AoLuQRmYGUKmeS8WMyoxRUrpkqTslZjJ9jWwgBM_LxiinvsKsxxLUbMtegT6511iTX-6xvs7iLCbuYfbu0zgYTTIcpOJsZ32S-9_8mW28xJON82p2Tk9ZsIl785py8P9y_LZ_y1cvj8_JulVvOy5RLaKRq64I1wJCW9b6UjWElSjSFMmxMEAzQQkuNKpXVhtUCmDCiRGb4nFxPd4fQf20xpqpz0eJmYzz221gxTSVQwQ9DVTDOKRyGUqkCQI_wZoI29DEGbKshuM6EXQW02r-i0tX0ipFeTdQh4h-blj_e0oTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25886119</pqid></control><display><type>article</type><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><source>IEEE Xplore (Online service)</source><creator>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</creator><creatorcontrib>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</creatorcontrib><description>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.< ></description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.148345</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; Error correction ; Information systems ; Integrated circuit modeling ; Laboratories ; Parameter estimation ; Robust control ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1992-07, Vol.37 (7), p.929-941</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</citedby><cites>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/148345$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Kosut, R.L.</creatorcontrib><creatorcontrib>Lau, M.K.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.< ></description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Error correction</subject><subject>Information systems</subject><subject>Integrated circuit modeling</subject><subject>Laboratories</subject><subject>Parameter estimation</subject><subject>Robust control</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq6r4NlTT-KlayaPNjnK4gsWPPi4ljSdspFtWpMsst_eLhX0tqf_PH7MZQi5BLoAoPpWL0AoLuQRmYGUKmeS8WMyoxRUrpkqTslZjJ9jWwgBM_LxiinvsKsxxLUbMtegT6511iTX-6xvs7iLCbuYfbu0zgYTTIcpOJsZ32S-9_8mW28xJON82p2Tk9ZsIl785py8P9y_LZ_y1cvj8_JulVvOy5RLaKRq64I1wJCW9b6UjWElSjSFMmxMEAzQQkuNKpXVhtUCmDCiRGb4nFxPd4fQf20xpqpz0eJmYzz221gxTSVQwQ9DVTDOKRyGUqkCQI_wZoI29DEGbKshuM6EXQW02r-i0tX0ipFeTdQh4h-blj_e0oTQ</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Kosut, R.L.</creator><creator>Lau, M.K.</creator><creator>Boyd, S.P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920701</creationdate><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><author>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Error correction</topic><topic>Information systems</topic><topic>Integrated circuit modeling</topic><topic>Laboratories</topic><topic>Parameter estimation</topic><topic>Robust control</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosut, R.L.</creatorcontrib><creatorcontrib>Lau, M.K.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosut, R.L.</au><au>Lau, M.K.</au><au>Boyd, S.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set-membership identification of systems with parametric and nonparametric uncertainty</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1992-07-01</date><risdate>1992</risdate><volume>37</volume><issue>7</issue><spage>929</spage><epage>941</epage><pages>929-941</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.< ></abstract><pub>IEEE</pub><doi>10.1109/9.148345</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 1992-07, Vol.37 (7), p.929-941 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_proquest_miscellaneous_28623301 |
source | IEEE Xplore (Online service) |
subjects | Adaptive control Algorithm design and analysis Error correction Information systems Integrated circuit modeling Laboratories Parameter estimation Robust control Stochastic processes Uncertainty |
title | Set-membership identification of systems with parametric and nonparametric uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set-membership%20identification%20of%20systems%20with%20parametric%20and%20nonparametric%20uncertainty&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kosut,%20R.L.&rft.date=1992-07-01&rft.volume=37&rft.issue=7&rft.spage=929&rft.epage=941&rft.pages=929-941&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.148345&rft_dat=%3Cproquest_ieee_%3E25886119%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25886119&rft_id=info:pmid/&rft_ieee_id=148345&rfr_iscdi=true |