Loading…

Set-membership identification of systems with parametric and nonparametric uncertainty

A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic distu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on automatic control 1992-07, Vol.37 (7), p.929-941
Main Authors: Kosut, R.L., Lau, M.K., Boyd, S.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3
cites cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3
container_end_page 941
container_issue 7
container_start_page 929
container_title IEEE transactions on automatic control
container_volume 37
creator Kosut, R.L.
Lau, M.K.
Boyd, S.P.
description A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.< >
doi_str_mv 10.1109/9.148345
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_28623301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>148345</ieee_id><sourcerecordid>25886119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</originalsourceid><addsrcrecordid>eNqF0UtLxDAQB_AgCq6r4NlTT-KlayaPNjnK4gsWPPi4ljSdspFtWpMsst_eLhX0tqf_PH7MZQi5BLoAoPpWL0AoLuQRmYGUKmeS8WMyoxRUrpkqTslZjJ9jWwgBM_LxiinvsKsxxLUbMtegT6511iTX-6xvs7iLCbuYfbu0zgYTTIcpOJsZ32S-9_8mW28xJON82p2Tk9ZsIl785py8P9y_LZ_y1cvj8_JulVvOy5RLaKRq64I1wJCW9b6UjWElSjSFMmxMEAzQQkuNKpXVhtUCmDCiRGb4nFxPd4fQf20xpqpz0eJmYzz221gxTSVQwQ9DVTDOKRyGUqkCQI_wZoI29DEGbKshuM6EXQW02r-i0tX0ipFeTdQh4h-blj_e0oTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25886119</pqid></control><display><type>article</type><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><source>IEEE Xplore (Online service)</source><creator>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</creator><creatorcontrib>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</creatorcontrib><description>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.&lt; &gt;</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/9.148345</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; Algorithm design and analysis ; Error correction ; Information systems ; Integrated circuit modeling ; Laboratories ; Parameter estimation ; Robust control ; Stochastic processes ; Uncertainty</subject><ispartof>IEEE transactions on automatic control, 1992-07, Vol.37 (7), p.929-941</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</citedby><cites>FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/148345$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Kosut, R.L.</creatorcontrib><creatorcontrib>Lau, M.K.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.&lt; &gt;</description><subject>Adaptive control</subject><subject>Algorithm design and analysis</subject><subject>Error correction</subject><subject>Information systems</subject><subject>Integrated circuit modeling</subject><subject>Laboratories</subject><subject>Parameter estimation</subject><subject>Robust control</subject><subject>Stochastic processes</subject><subject>Uncertainty</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqF0UtLxDAQB_AgCq6r4NlTT-KlayaPNjnK4gsWPPi4ljSdspFtWpMsst_eLhX0tqf_PH7MZQi5BLoAoPpWL0AoLuQRmYGUKmeS8WMyoxRUrpkqTslZjJ9jWwgBM_LxiinvsKsxxLUbMtegT6511iTX-6xvs7iLCbuYfbu0zgYTTIcpOJsZ32S-9_8mW28xJON82p2Tk9ZsIl785py8P9y_LZ_y1cvj8_JulVvOy5RLaKRq64I1wJCW9b6UjWElSjSFMmxMEAzQQkuNKpXVhtUCmDCiRGb4nFxPd4fQf20xpqpz0eJmYzz221gxTSVQwQ9DVTDOKRyGUqkCQI_wZoI29DEGbKshuM6EXQW02r-i0tX0ipFeTdQh4h-blj_e0oTQ</recordid><startdate>19920701</startdate><enddate>19920701</enddate><creator>Kosut, R.L.</creator><creator>Lau, M.K.</creator><creator>Boyd, S.P.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>FR3</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19920701</creationdate><title>Set-membership identification of systems with parametric and nonparametric uncertainty</title><author>Kosut, R.L. ; Lau, M.K. ; Boyd, S.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Adaptive control</topic><topic>Algorithm design and analysis</topic><topic>Error correction</topic><topic>Information systems</topic><topic>Integrated circuit modeling</topic><topic>Laboratories</topic><topic>Parameter estimation</topic><topic>Robust control</topic><topic>Stochastic processes</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosut, R.L.</creatorcontrib><creatorcontrib>Lau, M.K.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosut, R.L.</au><au>Lau, M.K.</au><au>Boyd, S.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Set-membership identification of systems with parametric and nonparametric uncertainty</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>1992-07-01</date><risdate>1992</risdate><volume>37</volume><issue>7</issue><spage>929</spage><epage>941</epage><pages>929-941</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>A method for parameter set estimation in which the system model is assumed to contain both parametric and nonparametric uncertainty is presented. In the disturbance-free case, the parameter set estimate is guaranteed to contain the parameter set of the true plant. In the presence of stochastic disturbances, the parameter set estimate obtained from finite data records is shown to have the property that it contains the true-plant parameter set with probability one as the data length tends to infinity.&lt; &gt;</abstract><pub>IEEE</pub><doi>10.1109/9.148345</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 1992-07, Vol.37 (7), p.929-941
issn 0018-9286
1558-2523
language eng
recordid cdi_proquest_miscellaneous_28623301
source IEEE Xplore (Online service)
subjects Adaptive control
Algorithm design and analysis
Error correction
Information systems
Integrated circuit modeling
Laboratories
Parameter estimation
Robust control
Stochastic processes
Uncertainty
title Set-membership identification of systems with parametric and nonparametric uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Set-membership%20identification%20of%20systems%20with%20parametric%20and%20nonparametric%20uncertainty&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Kosut,%20R.L.&rft.date=1992-07-01&rft.volume=37&rft.issue=7&rft.spage=929&rft.epage=941&rft.pages=929-941&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/9.148345&rft_dat=%3Cproquest_ieee_%3E25886119%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-51d58fb62d12e07bfb625da27e5ea68a2e5e1421ec1f0a878c9a2b4124a47e2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=25886119&rft_id=info:pmid/&rft_ieee_id=148345&rfr_iscdi=true