Loading…
Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies
A method of stress-strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian-Eulerian formulation. Constitutive equations are derived which relate the Jauman...
Saved in:
Published in: | International applied mechanics 2005-06, Vol.41 (6), p.614-620 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3 |
container_end_page | 620 |
container_issue | 6 |
container_start_page | 614 |
container_title | International applied mechanics |
container_volume | 41 |
creator | Golovanov, A. I. Sultanov, L. U. |
description | A method of stress-strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian-Eulerian formulation. Constitutive equations are derived which relate the Jaumann derivative of the Cauchy-Euler stress tensor and the strain rate. The spatial discretization is based on the FEM and multilinear three-dimensional isoparametric approximation. An algorithm of stress-strain analysis of elastic, hyperelastic, and perfectly plastic bodies is given. Numerical examples demonstrate the capabilities of the method and its software implementation |
doi_str_mv | 10.1007/s10778-005-0129-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28623789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28623789</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3</originalsourceid><addsrcrecordid>eNotkE1PAyEQhonRxFr9Ad725A0dYFngqPWrSaOJ1jMhLFTM7lJha-q_l029zEwy7zyZPAhdErgmAOImExBCYgCOgVCF90doRrhgWHJJj8sMDcMCFD9FZzl_AYASQs3Q28uudylY01XL4cflMWzMGOJQRV-tTNq46qEzeYzbqQZbvY_JhCFP6_Vncg7fh94NuVwUwl1sg8vn6MSbLruL_z5HH48P68UzXr0-LRe3K2ypaEZMKaOtEsCINLWgTHDLjKItA2WI5Nz5tmmZ99DS2ioCrJaytr6W4BpowLM5ujpwtyl-78rrug_Zuq4zg4u7rKlsClWqEiSHoE0x5-S83qbQm_SrCejJnj7Y08WenuzpPfsDS9hilQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28623789</pqid></control><display><type>article</type><title>Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies</title><source>Springer Nature</source><creator>Golovanov, A. I. ; Sultanov, L. U.</creator><creatorcontrib>Golovanov, A. I. ; Sultanov, L. U.</creatorcontrib><description>A method of stress-strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian-Eulerian formulation. Constitutive equations are derived which relate the Jaumann derivative of the Cauchy-Euler stress tensor and the strain rate. The spatial discretization is based on the FEM and multilinear three-dimensional isoparametric approximation. An algorithm of stress-strain analysis of elastic, hyperelastic, and perfectly plastic bodies is given. Numerical examples demonstrate the capabilities of the method and its software implementation</description><identifier>ISSN: 1063-7095</identifier><identifier>EISSN: 1573-8582</identifier><identifier>DOI: 10.1007/s10778-005-0129-x</identifier><language>eng</language><ispartof>International applied mechanics, 2005-06, Vol.41 (6), p.614-620</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3</citedby><cites>FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Golovanov, A. I.</creatorcontrib><creatorcontrib>Sultanov, L. U.</creatorcontrib><title>Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies</title><title>International applied mechanics</title><description>A method of stress-strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian-Eulerian formulation. Constitutive equations are derived which relate the Jaumann derivative of the Cauchy-Euler stress tensor and the strain rate. The spatial discretization is based on the FEM and multilinear three-dimensional isoparametric approximation. An algorithm of stress-strain analysis of elastic, hyperelastic, and perfectly plastic bodies is given. Numerical examples demonstrate the capabilities of the method and its software implementation</description><issn>1063-7095</issn><issn>1573-8582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1PAyEQhonRxFr9Ad725A0dYFngqPWrSaOJ1jMhLFTM7lJha-q_l029zEwy7zyZPAhdErgmAOImExBCYgCOgVCF90doRrhgWHJJj8sMDcMCFD9FZzl_AYASQs3Q28uudylY01XL4cflMWzMGOJQRV-tTNq46qEzeYzbqQZbvY_JhCFP6_Vncg7fh94NuVwUwl1sg8vn6MSbLruL_z5HH48P68UzXr0-LRe3K2ypaEZMKaOtEsCINLWgTHDLjKItA2WI5Nz5tmmZ99DS2ioCrJaytr6W4BpowLM5ujpwtyl-78rrug_Zuq4zg4u7rKlsClWqEiSHoE0x5-S83qbQm_SrCejJnj7Y08WenuzpPfsDS9hilQ</recordid><startdate>200506</startdate><enddate>200506</enddate><creator>Golovanov, A. I.</creator><creator>Sultanov, L. U.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200506</creationdate><title>Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies</title><author>Golovanov, A. I. ; Sultanov, L. U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golovanov, A. I.</creatorcontrib><creatorcontrib>Sultanov, L. U.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International applied mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golovanov, A. I.</au><au>Sultanov, L. U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies</atitle><jtitle>International applied mechanics</jtitle><date>2005-06</date><risdate>2005</risdate><volume>41</volume><issue>6</issue><spage>614</spage><epage>620</epage><pages>614-620</pages><issn>1063-7095</issn><eissn>1573-8582</eissn><abstract>A method of stress-strain analysis of elastoplastic bodies with large displacements, rotations, and finite strains is developed. The incremental loading technique is used within the framework of the arbitrary Lagrangian-Eulerian formulation. Constitutive equations are derived which relate the Jaumann derivative of the Cauchy-Euler stress tensor and the strain rate. The spatial discretization is based on the FEM and multilinear three-dimensional isoparametric approximation. An algorithm of stress-strain analysis of elastic, hyperelastic, and perfectly plastic bodies is given. Numerical examples demonstrate the capabilities of the method and its software implementation</abstract><doi>10.1007/s10778-005-0129-x</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7095 |
ispartof | International applied mechanics, 2005-06, Vol.41 (6), p.614-620 |
issn | 1063-7095 1573-8582 |
language | eng |
recordid | cdi_proquest_miscellaneous_28623789 |
source | Springer Nature |
title | Numerical Investigation of Large Elastoplastic Strains of Three-Dimensional Bodies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20Large%20Elastoplastic%20Strains%20of%20Three-Dimensional%20Bodies&rft.jtitle=International%20applied%20mechanics&rft.au=Golovanov,%20A.%20I.&rft.date=2005-06&rft.volume=41&rft.issue=6&rft.spage=614&rft.epage=620&rft.pages=614-620&rft.issn=1063-7095&rft.eissn=1573-8582&rft_id=info:doi/10.1007/s10778-005-0129-x&rft_dat=%3Cproquest_cross%3E28623789%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-2232d970318a472375c3a92d309a1855efd6d3ff0d24c91034884cf480e6060f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28623789&rft_id=info:pmid/&rfr_iscdi=true |