Loading…
Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery
Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here,...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2304269-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | e2304269 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Bai, Yang Khoo, Zi Hui Jonathan I Made, Riko Xie, Huiqing Lim, Carina Yi Jing Handoko, Albertus Denny Chellappan, Vijila Cheng, Jianwei Jayce Wei, Fengxia Lim, Yee‐Fun Hippalgaonkar, Kedar |
description | Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling.
A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques. |
doi_str_mv | 10.1002/adma.202304269 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863292735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912956216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi1ERdPCliUaiQ2bCb6MPeNllJaClChIwNo64_EIR5442J6isMojVOqK18uT4CilldiwOTd959fR-RF6TfCUYEzfQzfAlGLKcEWFfIYmhFNSVljy52iCJeOlFFVzji5iXGOMpcDiBTpntZC54xPk5s5H0x32dwvvt8VydMnmZtWujU721hSrbbKD_QXJ-k3R-1DMx8P-_kt7DMXn7z75jF-7TAevIYHbJauLJSQTLLh42P8urmzU_taE3Ut01ueZefWQL9G3D9df5x_Lxerm03y2KDWrmSxB4qrTfcP6iou-loZoDLyGjnNoSdWYjgMw0DyXFSGNbNqu4aSuG2yg7Wp2id6ddLfB_xhNTGrIJxjnYGP8GBVtBKOS1oxn9O0_6NqPYZOvU1QSKrmgRGRqeqJ08DEG06ttsAOEnSJYHX1QRx_Uow954c2D7NgOpnvE_z4-A_IE_LTO7P4jp2ZXy9mT-B95TJrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912956216</pqid></control><display><type>article</type><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</creator><creatorcontrib>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</creatorcontrib><description>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling.
A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304269</identifier><identifier>PMID: 37690005</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Composition ; Copper ; Electromagnetic absorption ; high‐throughput experiments ; Hydrogen evolution ; Machine learning ; Optimization ; Optimization models ; Photoelectric effect ; Photoelectric emission ; photo‐electrochemical water splitting ; Random sampling ; Sulfides ; Tin dioxide ; Water splitting ; Workflow</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2304269-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</citedby><cites>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</cites><orcidid>0000-0002-1012-3616 ; 0000-0002-5157-8633 ; 0000-0002-5181-3701 ; 0000-0001-7496-3000 ; 0000-0002-6534-4651 ; 0000-0002-1270-9047 ; 0000-0002-2058-5056 ; 0000-0002-7172-9726 ; 0000-0002-1643-3770 ; 0000-0001-8276-2364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37690005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Khoo, Zi Hui Jonathan</creatorcontrib><creatorcontrib>I Made, Riko</creatorcontrib><creatorcontrib>Xie, Huiqing</creatorcontrib><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Handoko, Albertus Denny</creatorcontrib><creatorcontrib>Chellappan, Vijila</creatorcontrib><creatorcontrib>Cheng, Jianwei Jayce</creatorcontrib><creatorcontrib>Wei, Fengxia</creatorcontrib><creatorcontrib>Lim, Yee‐Fun</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling.
A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</description><subject>Composition</subject><subject>Copper</subject><subject>Electromagnetic absorption</subject><subject>high‐throughput experiments</subject><subject>Hydrogen evolution</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photo‐electrochemical water splitting</subject><subject>Random sampling</subject><subject>Sulfides</subject><subject>Tin dioxide</subject><subject>Water splitting</subject><subject>Workflow</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhi1ERdPCliUaiQ2bCb6MPeNllJaClChIwNo64_EIR5442J6isMojVOqK18uT4CilldiwOTd959fR-RF6TfCUYEzfQzfAlGLKcEWFfIYmhFNSVljy52iCJeOlFFVzji5iXGOMpcDiBTpntZC54xPk5s5H0x32dwvvt8VydMnmZtWujU721hSrbbKD_QXJ-k3R-1DMx8P-_kt7DMXn7z75jF-7TAevIYHbJauLJSQTLLh42P8urmzU_taE3Ut01ueZefWQL9G3D9df5x_Lxerm03y2KDWrmSxB4qrTfcP6iou-loZoDLyGjnNoSdWYjgMw0DyXFSGNbNqu4aSuG2yg7Wp2id6ddLfB_xhNTGrIJxjnYGP8GBVtBKOS1oxn9O0_6NqPYZOvU1QSKrmgRGRqeqJ08DEG06ttsAOEnSJYHX1QRx_Uow954c2D7NgOpnvE_z4-A_IE_LTO7P4jp2ZXy9mT-B95TJrB</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bai, Yang</creator><creator>Khoo, Zi Hui Jonathan</creator><creator>I Made, Riko</creator><creator>Xie, Huiqing</creator><creator>Lim, Carina Yi Jing</creator><creator>Handoko, Albertus Denny</creator><creator>Chellappan, Vijila</creator><creator>Cheng, Jianwei Jayce</creator><creator>Wei, Fengxia</creator><creator>Lim, Yee‐Fun</creator><creator>Hippalgaonkar, Kedar</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1012-3616</orcidid><orcidid>https://orcid.org/0000-0002-5157-8633</orcidid><orcidid>https://orcid.org/0000-0002-5181-3701</orcidid><orcidid>https://orcid.org/0000-0001-7496-3000</orcidid><orcidid>https://orcid.org/0000-0002-6534-4651</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-2058-5056</orcidid><orcidid>https://orcid.org/0000-0002-7172-9726</orcidid><orcidid>https://orcid.org/0000-0002-1643-3770</orcidid><orcidid>https://orcid.org/0000-0001-8276-2364</orcidid></search><sort><creationdate>20240101</creationdate><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><author>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Composition</topic><topic>Copper</topic><topic>Electromagnetic absorption</topic><topic>high‐throughput experiments</topic><topic>Hydrogen evolution</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photo‐electrochemical water splitting</topic><topic>Random sampling</topic><topic>Sulfides</topic><topic>Tin dioxide</topic><topic>Water splitting</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Khoo, Zi Hui Jonathan</creatorcontrib><creatorcontrib>I Made, Riko</creatorcontrib><creatorcontrib>Xie, Huiqing</creatorcontrib><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Handoko, Albertus Denny</creatorcontrib><creatorcontrib>Chellappan, Vijila</creatorcontrib><creatorcontrib>Cheng, Jianwei Jayce</creatorcontrib><creatorcontrib>Wei, Fengxia</creatorcontrib><creatorcontrib>Lim, Yee‐Fun</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yang</au><au>Khoo, Zi Hui Jonathan</au><au>I Made, Riko</au><au>Xie, Huiqing</au><au>Lim, Carina Yi Jing</au><au>Handoko, Albertus Denny</au><au>Chellappan, Vijila</au><au>Cheng, Jianwei Jayce</au><au>Wei, Fengxia</au><au>Lim, Yee‐Fun</au><au>Hippalgaonkar, Kedar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2304269</spage><epage>n/a</epage><pages>e2304269-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling.
A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37690005</pmid><doi>10.1002/adma.202304269</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1012-3616</orcidid><orcidid>https://orcid.org/0000-0002-5157-8633</orcidid><orcidid>https://orcid.org/0000-0002-5181-3701</orcidid><orcidid>https://orcid.org/0000-0001-7496-3000</orcidid><orcidid>https://orcid.org/0000-0002-6534-4651</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-2058-5056</orcidid><orcidid>https://orcid.org/0000-0002-7172-9726</orcidid><orcidid>https://orcid.org/0000-0002-1643-3770</orcidid><orcidid>https://orcid.org/0000-0001-8276-2364</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2304269-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2863292735 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Composition Copper Electromagnetic absorption high‐throughput experiments Hydrogen evolution Machine learning Optimization Optimization models Photoelectric effect Photoelectric emission photo‐electrochemical water splitting Random sampling Sulfides Tin dioxide Water splitting Workflow |
title | Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed%E2%80%90Loop%20Multi%E2%80%90Objective%20Optimization%20for%20Cu%E2%80%93Sb%E2%80%93S%20Photo%E2%80%90Electrocatalytic%20Materials%E2%80%99%20Discovery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Bai,%20Yang&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2304269&rft.epage=n/a&rft.pages=e2304269-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304269&rft_dat=%3Cproquest_cross%3E2912956216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912956216&rft_id=info:pmid/37690005&rfr_iscdi=true |