Loading…

Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery

Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here,...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-01, Vol.36 (2), p.e2304269-n/a
Main Authors: Bai, Yang, Khoo, Zi Hui Jonathan, I Made, Riko, Xie, Huiqing, Lim, Carina Yi Jing, Handoko, Albertus Denny, Chellappan, Vijila, Cheng, Jianwei Jayce, Wei, Fengxia, Lim, Yee‐Fun, Hippalgaonkar, Kedar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73
cites cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73
container_end_page n/a
container_issue 2
container_start_page e2304269
container_title Advanced materials (Weinheim)
container_volume 36
creator Bai, Yang
Khoo, Zi Hui Jonathan
I Made, Riko
Xie, Huiqing
Lim, Carina Yi Jing
Handoko, Albertus Denny
Chellappan, Vijila
Cheng, Jianwei Jayce
Wei, Fengxia
Lim, Yee‐Fun
Hippalgaonkar, Kedar
description Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling. A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.
doi_str_mv 10.1002/adma.202304269
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2863292735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912956216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi1ERdPCliUaiQ2bCb6MPeNllJaClChIwNo64_EIR5442J6isMojVOqK18uT4CilldiwOTd959fR-RF6TfCUYEzfQzfAlGLKcEWFfIYmhFNSVljy52iCJeOlFFVzji5iXGOMpcDiBTpntZC54xPk5s5H0x32dwvvt8VydMnmZtWujU721hSrbbKD_QXJ-k3R-1DMx8P-_kt7DMXn7z75jF-7TAevIYHbJauLJSQTLLh42P8urmzU_taE3Ut01ueZefWQL9G3D9df5x_Lxerm03y2KDWrmSxB4qrTfcP6iou-loZoDLyGjnNoSdWYjgMw0DyXFSGNbNqu4aSuG2yg7Wp2id6ddLfB_xhNTGrIJxjnYGP8GBVtBKOS1oxn9O0_6NqPYZOvU1QSKrmgRGRqeqJ08DEG06ttsAOEnSJYHX1QRx_Uow954c2D7NgOpnvE_z4-A_IE_LTO7P4jp2ZXy9mT-B95TJrB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912956216</pqid></control><display><type>article</type><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</creator><creatorcontrib>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</creatorcontrib><description>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling. A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304269</identifier><identifier>PMID: 37690005</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Composition ; Copper ; Electromagnetic absorption ; high‐throughput experiments ; Hydrogen evolution ; Machine learning ; Optimization ; Optimization models ; Photoelectric effect ; Photoelectric emission ; photo‐electrochemical water splitting ; Random sampling ; Sulfides ; Tin dioxide ; Water splitting ; Workflow</subject><ispartof>Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2304269-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</citedby><cites>FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</cites><orcidid>0000-0002-1012-3616 ; 0000-0002-5157-8633 ; 0000-0002-5181-3701 ; 0000-0001-7496-3000 ; 0000-0002-6534-4651 ; 0000-0002-1270-9047 ; 0000-0002-2058-5056 ; 0000-0002-7172-9726 ; 0000-0002-1643-3770 ; 0000-0001-8276-2364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37690005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Khoo, Zi Hui Jonathan</creatorcontrib><creatorcontrib>I Made, Riko</creatorcontrib><creatorcontrib>Xie, Huiqing</creatorcontrib><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Handoko, Albertus Denny</creatorcontrib><creatorcontrib>Chellappan, Vijila</creatorcontrib><creatorcontrib>Cheng, Jianwei Jayce</creatorcontrib><creatorcontrib>Wei, Fengxia</creatorcontrib><creatorcontrib>Lim, Yee‐Fun</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling. A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</description><subject>Composition</subject><subject>Copper</subject><subject>Electromagnetic absorption</subject><subject>high‐throughput experiments</subject><subject>Hydrogen evolution</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>photo‐electrochemical water splitting</subject><subject>Random sampling</subject><subject>Sulfides</subject><subject>Tin dioxide</subject><subject>Water splitting</subject><subject>Workflow</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkctuEzEUhi1ERdPCliUaiQ2bCb6MPeNllJaClChIwNo64_EIR5442J6isMojVOqK18uT4CilldiwOTd959fR-RF6TfCUYEzfQzfAlGLKcEWFfIYmhFNSVljy52iCJeOlFFVzji5iXGOMpcDiBTpntZC54xPk5s5H0x32dwvvt8VydMnmZtWujU721hSrbbKD_QXJ-k3R-1DMx8P-_kt7DMXn7z75jF-7TAevIYHbJauLJSQTLLh42P8urmzU_taE3Ut01ueZefWQL9G3D9df5x_Lxerm03y2KDWrmSxB4qrTfcP6iou-loZoDLyGjnNoSdWYjgMw0DyXFSGNbNqu4aSuG2yg7Wp2id6ddLfB_xhNTGrIJxjnYGP8GBVtBKOS1oxn9O0_6NqPYZOvU1QSKrmgRGRqeqJ08DEG06ttsAOEnSJYHX1QRx_Uow954c2D7NgOpnvE_z4-A_IE_LTO7P4jp2ZXy9mT-B95TJrB</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bai, Yang</creator><creator>Khoo, Zi Hui Jonathan</creator><creator>I Made, Riko</creator><creator>Xie, Huiqing</creator><creator>Lim, Carina Yi Jing</creator><creator>Handoko, Albertus Denny</creator><creator>Chellappan, Vijila</creator><creator>Cheng, Jianwei Jayce</creator><creator>Wei, Fengxia</creator><creator>Lim, Yee‐Fun</creator><creator>Hippalgaonkar, Kedar</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1012-3616</orcidid><orcidid>https://orcid.org/0000-0002-5157-8633</orcidid><orcidid>https://orcid.org/0000-0002-5181-3701</orcidid><orcidid>https://orcid.org/0000-0001-7496-3000</orcidid><orcidid>https://orcid.org/0000-0002-6534-4651</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-2058-5056</orcidid><orcidid>https://orcid.org/0000-0002-7172-9726</orcidid><orcidid>https://orcid.org/0000-0002-1643-3770</orcidid><orcidid>https://orcid.org/0000-0001-8276-2364</orcidid></search><sort><creationdate>20240101</creationdate><title>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</title><author>Bai, Yang ; Khoo, Zi Hui Jonathan ; I Made, Riko ; Xie, Huiqing ; Lim, Carina Yi Jing ; Handoko, Albertus Denny ; Chellappan, Vijila ; Cheng, Jianwei Jayce ; Wei, Fengxia ; Lim, Yee‐Fun ; Hippalgaonkar, Kedar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Composition</topic><topic>Copper</topic><topic>Electromagnetic absorption</topic><topic>high‐throughput experiments</topic><topic>Hydrogen evolution</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>photo‐electrochemical water splitting</topic><topic>Random sampling</topic><topic>Sulfides</topic><topic>Tin dioxide</topic><topic>Water splitting</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Khoo, Zi Hui Jonathan</creatorcontrib><creatorcontrib>I Made, Riko</creatorcontrib><creatorcontrib>Xie, Huiqing</creatorcontrib><creatorcontrib>Lim, Carina Yi Jing</creatorcontrib><creatorcontrib>Handoko, Albertus Denny</creatorcontrib><creatorcontrib>Chellappan, Vijila</creatorcontrib><creatorcontrib>Cheng, Jianwei Jayce</creatorcontrib><creatorcontrib>Wei, Fengxia</creatorcontrib><creatorcontrib>Lim, Yee‐Fun</creatorcontrib><creatorcontrib>Hippalgaonkar, Kedar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Yang</au><au>Khoo, Zi Hui Jonathan</au><au>I Made, Riko</au><au>Xie, Huiqing</au><au>Lim, Carina Yi Jing</au><au>Handoko, Albertus Denny</au><au>Chellappan, Vijila</au><au>Cheng, Jianwei Jayce</au><au>Wei, Fengxia</au><au>Lim, Yee‐Fun</au><au>Hippalgaonkar, Kedar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><spage>e2304269</spage><epage>n/a</epage><pages>e2304269-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Copper antimony sulfides are regarded as promising catalysts for photo‐electrochemical water splitting because of their earth abundance and broad light absorption. The unique photoactivity of copper antimony sulfides is dependent on their various crystalline structures and atomic compositions. Here, a closed‐loop workflow is built, which explores Cu–Sb–S compositional space to optimize its photo‐electrocatalytic hydrogen evolution from water, by integrating a high‐throughput robotic platform, characterization techniques, and machine learning (ML) optimization workflow. The multi‐objective optimization model discovers optimum experimental conditions after only nine cycles of integrated experiments–machine learning loop. Photocurrent testing at 0 V versus reversible hydrogen electrode (RHE) confirms the expected correlation between the materials’ properties and photocurrent. An optimum photocurrent of −186 µA cm−2 is observed on Cu–Sb–S in the ratio of 9:45:46 in the form of single‐layer coating on F‐doped SnO2 (FTO) glass with a corresponding bandgap of 1.85 eV and 63.2% Cu1+/Cu species content. The targeted intelligent search reveals a nonobvious CuSbS composition that exhibits 2.3 times greater activity than baseline results from random sampling. A closed‐loop workflow combining synthesis, deposition, characterization is used to explore Cu–Sb–S oxide films for efficient water reduction. The workflow narrows down optimal conditions for high photo‐electrocatalytic activity by optimizing for proxy objectives, including bandgap, Cu1+/Cu ratio, and film uniformity. This results in the successful identification of an optimal material composition through multi‐objective constrained optimization techniques.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37690005</pmid><doi>10.1002/adma.202304269</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1012-3616</orcidid><orcidid>https://orcid.org/0000-0002-5157-8633</orcidid><orcidid>https://orcid.org/0000-0002-5181-3701</orcidid><orcidid>https://orcid.org/0000-0001-7496-3000</orcidid><orcidid>https://orcid.org/0000-0002-6534-4651</orcidid><orcidid>https://orcid.org/0000-0002-1270-9047</orcidid><orcidid>https://orcid.org/0000-0002-2058-5056</orcidid><orcidid>https://orcid.org/0000-0002-7172-9726</orcidid><orcidid>https://orcid.org/0000-0002-1643-3770</orcidid><orcidid>https://orcid.org/0000-0001-8276-2364</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-01, Vol.36 (2), p.e2304269-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2863292735
source Wiley-Blackwell Read & Publish Collection
subjects Composition
Copper
Electromagnetic absorption
high‐throughput experiments
Hydrogen evolution
Machine learning
Optimization
Optimization models
Photoelectric effect
Photoelectric emission
photo‐electrochemical water splitting
Random sampling
Sulfides
Tin dioxide
Water splitting
Workflow
title Closed‐Loop Multi‐Objective Optimization for Cu–Sb–S Photo‐Electrocatalytic Materials’ Discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed%E2%80%90Loop%20Multi%E2%80%90Objective%20Optimization%20for%20Cu%E2%80%93Sb%E2%80%93S%20Photo%E2%80%90Electrocatalytic%20Materials%E2%80%99%20Discovery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Bai,%20Yang&rft.date=2024-01-01&rft.volume=36&rft.issue=2&rft.spage=e2304269&rft.epage=n/a&rft.pages=e2304269-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304269&rft_dat=%3Cproquest_cross%3E2912956216%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3739-a904dcf83f456f79e1c0a57ad55ab148ed5aa3ac548e411898bd8517780eabd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2912956216&rft_id=info:pmid/37690005&rfr_iscdi=true