Loading…

Self-assembly at the interface of λ-carrageenan and amphiphilic and cationic peptides: More than meets the eye

[Display omitted] Self-assembly of macroscopic membranes at the interface between self-assembling peptides and aqueous polymer solutions of opposite charge has been explored mostly due to the membranes' unique hierarchical structure of three distinct regions, including a layer of perpendicular...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2023-12, Vol.652, p.1897-1907
Main Authors: Yosefi, Gal, Eliraz, Nitsan, Kolusheva, Sofiya, Rapaport, Hanna, Bitton, Ronit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Self-assembly of macroscopic membranes at the interface between self-assembling peptides and aqueous polymer solutions of opposite charge has been explored mostly due to the membranes' unique hierarchical structure of three distinct regions, including a layer of perpendicular fibers. We report here on the formation and characterization of self-assembled membranes made with λ-carrageenan and the cationic β-sheet peptides, Pro-Lys-(Phe-Lys)5-Pro (PFK). Using SAXS, SEM, ITC, and rheology, we compared these membranes' morphology and physical properties to membranes made with alginate. We recognized that the polysaccharide's single chain conformation, its solution's viscosity, the potential of hydrogen bonding and electrostatic interactions between the polysaccharides and the peptides charged groups, and the strength of these interactions all affect the properties of the resulting membranes. As a result, we identified that an interplay between the polymer-peptide strength of interactions and the stiffness of the polysaccharide's single chain could be used as a route to control the structure–function relationship of the membranes. These results provide valuable information for creating guidelines to design self-assembly membranes with specific properties.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2023.09.022