Loading…

Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete

A viscoelastoplastic continuum damage (VEPCD) model has recently been developed and validated under the auspices of the National Cooperative Highway Research Program 9-19 project, entitled “Advanced Mixture Characterization for Superpave Support and Performance Models Management.” The VEPCD model is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials in civil engineering 2005-07, Vol.17 (4), p.384-392
Main Authors: Chehab, Ghassan R, Kim, Y. Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3
cites cdi_FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3
container_end_page 392
container_issue 4
container_start_page 384
container_title Journal of materials in civil engineering
container_volume 17
creator Chehab, Ghassan R
Kim, Y. Richard
description A viscoelastoplastic continuum damage (VEPCD) model has recently been developed and validated under the auspices of the National Cooperative Highway Research Program 9-19 project, entitled “Advanced Mixture Characterization for Superpave Support and Performance Models Management.” The VEPCD model is able to characterize the viscoelastic and viscoplastic responses of asphalt concrete (AC) in addition to microcracking. The primary objective of this paper is to validate the model under thermal loading conditions that are distinctively different from the mechanical loading conditions used in model development and calibration. Viscoplastic (VP) behavior is a typical response in AC at high temperatures; however, based on the t-T superposition principle, it is the slow strain rate observed in thermal cracking that triggers the VP response. Measured responses and fracture parameters from thermal strain restrained specimen tensile (TSRST) strength tests were compared with those predicted using the VEPCD model, the viscoelastic continuum damage model, and the linear viscoelastic model. The comparison confirmed: (1) the ability of the VEPCD model to accurately characterize the tensile behavior of asphalt concrete under thermally induced loading; and (2) a decrease in accuracy as the complexity of the model decreases.
doi_str_mv 10.1061/(ASCE)0899-1561(2005)17:4(384)
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28649057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28649057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxD95QtYuAH3ESI7GowlMqYkFhh6yJ60DAiYOdLPh7ErUqOzYzmzP3ag5CU0rOKUnoxWzxnN_MSSZlREVCZ4wQMafpZTzjWTzfQxMqYx4Jwfk-muywQ3QUwichhJOYTNDbaxW0MxZC59pxVhrnrumqpu9rfA01vBv86NbG4kXb2kpDV7kGdw6vPoyvweLcg_6qmnfsSrwI7QfYbkzQ3nTmBB2UYIM53e5j9HJ7s8rvo-XT3UO-WEbAU9lFRcLWIpNUFlQywXQGGVDOdGIyrmPB07LQsmQFSKkFTZk0TEpGhSl1InSh-TGabnJb7757EzpVD28Za6Exrg-KZUksiUgH8GoDau9C8KZUra9q8D-KEjVaVWq0qkZdatSlRquKpipWg9Xh_mxbBEGDLT00ugp_IYlMaZyMPXLDDZhRn673zfD_ruTfjl_cnYpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28649057</pqid></control><display><type>article</type><title>Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete</title><source>ASCE Civil Engineering Database</source><creator>Chehab, Ghassan R ; Kim, Y. Richard</creator><creatorcontrib>Chehab, Ghassan R ; Kim, Y. Richard</creatorcontrib><description>A viscoelastoplastic continuum damage (VEPCD) model has recently been developed and validated under the auspices of the National Cooperative Highway Research Program 9-19 project, entitled “Advanced Mixture Characterization for Superpave Support and Performance Models Management.” The VEPCD model is able to characterize the viscoelastic and viscoplastic responses of asphalt concrete (AC) in addition to microcracking. The primary objective of this paper is to validate the model under thermal loading conditions that are distinctively different from the mechanical loading conditions used in model development and calibration. Viscoplastic (VP) behavior is a typical response in AC at high temperatures; however, based on the t-T superposition principle, it is the slow strain rate observed in thermal cracking that triggers the VP response. Measured responses and fracture parameters from thermal strain restrained specimen tensile (TSRST) strength tests were compared with those predicted using the VEPCD model, the viscoelastic continuum damage model, and the linear viscoelastic model. The comparison confirmed: (1) the ability of the VEPCD model to accurately characterize the tensile behavior of asphalt concrete under thermally induced loading; and (2) a decrease in accuracy as the complexity of the model decreases.</description><identifier>ISSN: 0899-1561</identifier><identifier>EISSN: 1943-5533</identifier><identifier>DOI: 10.1061/(ASCE)0899-1561(2005)17:4(384)</identifier><language>eng</language><publisher>Reston, VA: American Society of Civil Engineers</publisher><subject>Applied sciences ; Bitumen. Tars. Bituminous binders and bituminous concretes ; Buildings. Public works ; Exact sciences and technology ; Materials ; TECHNICAL PAPERS</subject><ispartof>Journal of materials in civil engineering, 2005-07, Vol.17 (4), p.384-392</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3</citedby><cites>FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)0899-1561(2005)17:4(384)$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)0899-1561(2005)17:4(384)$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76063,76071</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16971467$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chehab, Ghassan R</creatorcontrib><creatorcontrib>Kim, Y. Richard</creatorcontrib><title>Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete</title><title>Journal of materials in civil engineering</title><description>A viscoelastoplastic continuum damage (VEPCD) model has recently been developed and validated under the auspices of the National Cooperative Highway Research Program 9-19 project, entitled “Advanced Mixture Characterization for Superpave Support and Performance Models Management.” The VEPCD model is able to characterize the viscoelastic and viscoplastic responses of asphalt concrete (AC) in addition to microcracking. The primary objective of this paper is to validate the model under thermal loading conditions that are distinctively different from the mechanical loading conditions used in model development and calibration. Viscoplastic (VP) behavior is a typical response in AC at high temperatures; however, based on the t-T superposition principle, it is the slow strain rate observed in thermal cracking that triggers the VP response. Measured responses and fracture parameters from thermal strain restrained specimen tensile (TSRST) strength tests were compared with those predicted using the VEPCD model, the viscoelastic continuum damage model, and the linear viscoelastic model. The comparison confirmed: (1) the ability of the VEPCD model to accurately characterize the tensile behavior of asphalt concrete under thermally induced loading; and (2) a decrease in accuracy as the complexity of the model decreases.</description><subject>Applied sciences</subject><subject>Bitumen. Tars. Bituminous binders and bituminous concretes</subject><subject>Buildings. Public works</subject><subject>Exact sciences and technology</subject><subject>Materials</subject><subject>TECHNICAL PAPERS</subject><issn>0899-1561</issn><issn>1943-5533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxD95QtYuAH3ESI7GowlMqYkFhh6yJ60DAiYOdLPh7ErUqOzYzmzP3ag5CU0rOKUnoxWzxnN_MSSZlREVCZ4wQMafpZTzjWTzfQxMqYx4Jwfk-muywQ3QUwichhJOYTNDbaxW0MxZC59pxVhrnrumqpu9rfA01vBv86NbG4kXb2kpDV7kGdw6vPoyvweLcg_6qmnfsSrwI7QfYbkzQ3nTmBB2UYIM53e5j9HJ7s8rvo-XT3UO-WEbAU9lFRcLWIpNUFlQywXQGGVDOdGIyrmPB07LQsmQFSKkFTZk0TEpGhSl1InSh-TGabnJb7757EzpVD28Za6Exrg-KZUksiUgH8GoDau9C8KZUra9q8D-KEjVaVWq0qkZdatSlRquKpipWg9Xh_mxbBEGDLT00ugp_IYlMaZyMPXLDDZhRn673zfD_ruTfjl_cnYpd</recordid><startdate>20050701</startdate><enddate>20050701</enddate><creator>Chehab, Ghassan R</creator><creator>Kim, Y. Richard</creator><general>American Society of Civil Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050701</creationdate><title>Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete</title><author>Chehab, Ghassan R ; Kim, Y. Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Bitumen. Tars. Bituminous binders and bituminous concretes</topic><topic>Buildings. Public works</topic><topic>Exact sciences and technology</topic><topic>Materials</topic><topic>TECHNICAL PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chehab, Ghassan R</creatorcontrib><creatorcontrib>Kim, Y. Richard</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of materials in civil engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chehab, Ghassan R</au><au>Kim, Y. Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete</atitle><jtitle>Journal of materials in civil engineering</jtitle><date>2005-07-01</date><risdate>2005</risdate><volume>17</volume><issue>4</issue><spage>384</spage><epage>392</epage><pages>384-392</pages><issn>0899-1561</issn><eissn>1943-5533</eissn><abstract>A viscoelastoplastic continuum damage (VEPCD) model has recently been developed and validated under the auspices of the National Cooperative Highway Research Program 9-19 project, entitled “Advanced Mixture Characterization for Superpave Support and Performance Models Management.” The VEPCD model is able to characterize the viscoelastic and viscoplastic responses of asphalt concrete (AC) in addition to microcracking. The primary objective of this paper is to validate the model under thermal loading conditions that are distinctively different from the mechanical loading conditions used in model development and calibration. Viscoplastic (VP) behavior is a typical response in AC at high temperatures; however, based on the t-T superposition principle, it is the slow strain rate observed in thermal cracking that triggers the VP response. Measured responses and fracture parameters from thermal strain restrained specimen tensile (TSRST) strength tests were compared with those predicted using the VEPCD model, the viscoelastic continuum damage model, and the linear viscoelastic model. The comparison confirmed: (1) the ability of the VEPCD model to accurately characterize the tensile behavior of asphalt concrete under thermally induced loading; and (2) a decrease in accuracy as the complexity of the model decreases.</abstract><cop>Reston, VA</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)0899-1561(2005)17:4(384)</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-1561
ispartof Journal of materials in civil engineering, 2005-07, Vol.17 (4), p.384-392
issn 0899-1561
1943-5533
language eng
recordid cdi_proquest_miscellaneous_28649057
source ASCE Civil Engineering Database
subjects Applied sciences
Bitumen. Tars. Bituminous binders and bituminous concretes
Buildings. Public works
Exact sciences and technology
Materials
TECHNICAL PAPERS
title Viscoelastoplastic Continuum Damage Model Application to Thermal Cracking of Asphalt Concrete
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A23%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Viscoelastoplastic%20Continuum%20Damage%20Model%20Application%20to%20Thermal%20Cracking%20of%20Asphalt%20Concrete&rft.jtitle=Journal%20of%20materials%20in%20civil%20engineering&rft.au=Chehab,%20Ghassan%20R&rft.date=2005-07-01&rft.volume=17&rft.issue=4&rft.spage=384&rft.epage=392&rft.pages=384-392&rft.issn=0899-1561&rft.eissn=1943-5533&rft_id=info:doi/10.1061/(ASCE)0899-1561(2005)17:4(384)&rft_dat=%3Cproquest_cross%3E28649057%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a379t-b62d58919b19252c8a8a132c6e83c4537fbc9f2ba99c51729e299215efc65cbc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28649057&rft_id=info:pmid/&rfr_iscdi=true