Loading…

The common vector approach and its relation to principal component analysis

The main point of the paper is to show the close relation between the nonzero principal components and the difference subspace together with the complementary close relation between the zero principal components and the common vector. A common vector representing each word-class is obtained from the...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on speech and audio processing 2001-09, Vol.9 (6), p.655-662
Main Authors: Gulmezoglu, M.B., Dzhafarov, V., Barkana, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3
cites cdi_FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3
container_end_page 662
container_issue 6
container_start_page 655
container_title IEEE transactions on speech and audio processing
container_volume 9
creator Gulmezoglu, M.B.
Dzhafarov, V.
Barkana, A.
description The main point of the paper is to show the close relation between the nonzero principal components and the difference subspace together with the complementary close relation between the zero principal components and the common vector. A common vector representing each word-class is obtained from the eigenvectors of the covariance matrix of its own word-class; that is, the common vector is in the direction of a linear combination of the eigenvectors corresponding to the zero eigenvalues of the covariance matrix. The methods that use the nonzero principal components for recognition purposes suggest the elimination of all the features that are in the direction of the eigenvectors corresponding to the smallest eigenvalues (including the zero eigenvalues) of the covariance matrix whereas the common vector approach suggests the elimination of all the features that are in the direction of the eigenvectors corresponding to the largest, all nonzero eigenvalues of the covariance matrix.
doi_str_mv 10.1109/89.943343
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28650612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>943343</ieee_id><sourcerecordid>2431644511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwaunIqJ46EyaJnk5yvAXDrzsXtL0lXV0TU06Yf-9GR0KHjwlkM97fPMl5JLRGWNUP4Ce6ZzznB-RCRMC0owLfhzvVPJUSiVPyVkIa0opMJVPyPtyhYl1m43rki-0g_OJ6XvvjF0lpquSZgiJx9YMTQSDS3rfdLbpTbsf6l2H3RCdaXehCefkpDZtwIvDOSXL56fl_DVdfLy8zR8Xqc05G1IDKldacVFzFQMZWmbKxJSo6rzCCurSIkgEoU2FgoMAXtYUOC2RWm75lNyNa2PMzy2Godg0wWLbmg7dNhSaac0ZSBXl7b8yAymoZFmE13_g2m19_FYoAHLJgEka0f2IrHcheKyLWMbG-F3BaLEvvwBdjOVHe3NYaII1be1NbC38DjCeCb0PeDWyBhF_Xg87vgEAg4rj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884618160</pqid></control><display><type>article</type><title>The common vector approach and its relation to principal component analysis</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Gulmezoglu, M.B. ; Dzhafarov, V. ; Barkana, A.</creator><creatorcontrib>Gulmezoglu, M.B. ; Dzhafarov, V. ; Barkana, A.</creatorcontrib><description>The main point of the paper is to show the close relation between the nonzero principal components and the difference subspace together with the complementary close relation between the zero principal components and the common vector. A common vector representing each word-class is obtained from the eigenvectors of the covariance matrix of its own word-class; that is, the common vector is in the direction of a linear combination of the eigenvectors corresponding to the zero eigenvalues of the covariance matrix. The methods that use the nonzero principal components for recognition purposes suggest the elimination of all the features that are in the direction of the eigenvectors corresponding to the smallest eigenvalues (including the zero eigenvalues) of the covariance matrix whereas the common vector approach suggests the elimination of all the features that are in the direction of the eigenvectors corresponding to the largest, all nonzero eigenvalues of the covariance matrix.</description><identifier>ISSN: 1063-6676</identifier><identifier>ISSN: 2329-9290</identifier><identifier>EISSN: 1558-2353</identifier><identifier>EISSN: 2329-9304</identifier><identifier>DOI: 10.1109/89.943343</identifier><identifier>CODEN: IESPEJ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Covariance matrix ; Eigenvalues ; Eigenvalues and eigenfunctions ; Eigenvectors ; Equations ; Exact sciences and technology ; Feature recognition ; Information, signal and communications theory ; Loudspeakers ; Mathematical analysis ; Mathematics ; Principal component analysis ; Principal components analysis ; Recognition ; Signal processing ; Speech ; Speech processing ; Speech recognition ; Studies ; Telecommunications and information theory ; Testing ; Two dimensional displays ; Vectors ; Vectors (mathematics)</subject><ispartof>IEEE transactions on speech and audio processing, 2001-09, Vol.9 (6), p.655-662</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3</citedby><cites>FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/943343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1132597$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gulmezoglu, M.B.</creatorcontrib><creatorcontrib>Dzhafarov, V.</creatorcontrib><creatorcontrib>Barkana, A.</creatorcontrib><title>The common vector approach and its relation to principal component analysis</title><title>IEEE transactions on speech and audio processing</title><addtitle>T-SAP</addtitle><description>The main point of the paper is to show the close relation between the nonzero principal components and the difference subspace together with the complementary close relation between the zero principal components and the common vector. A common vector representing each word-class is obtained from the eigenvectors of the covariance matrix of its own word-class; that is, the common vector is in the direction of a linear combination of the eigenvectors corresponding to the zero eigenvalues of the covariance matrix. The methods that use the nonzero principal components for recognition purposes suggest the elimination of all the features that are in the direction of the eigenvectors corresponding to the smallest eigenvalues (including the zero eigenvalues) of the covariance matrix whereas the common vector approach suggests the elimination of all the features that are in the direction of the eigenvectors corresponding to the largest, all nonzero eigenvalues of the covariance matrix.</description><subject>Applied sciences</subject><subject>Covariance matrix</subject><subject>Eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvectors</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Feature recognition</subject><subject>Information, signal and communications theory</subject><subject>Loudspeakers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Recognition</subject><subject>Signal processing</subject><subject>Speech</subject><subject>Speech processing</subject><subject>Speech recognition</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Testing</subject><subject>Two dimensional displays</subject><subject>Vectors</subject><subject>Vectors (mathematics)</subject><issn>1063-6676</issn><issn>2329-9290</issn><issn>1558-2353</issn><issn>2329-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwaunIqJ46EyaJnk5yvAXDrzsXtL0lXV0TU06Yf-9GR0KHjwlkM97fPMl5JLRGWNUP4Ce6ZzznB-RCRMC0owLfhzvVPJUSiVPyVkIa0opMJVPyPtyhYl1m43rki-0g_OJ6XvvjF0lpquSZgiJx9YMTQSDS3rfdLbpTbsf6l2H3RCdaXehCefkpDZtwIvDOSXL56fl_DVdfLy8zR8Xqc05G1IDKldacVFzFQMZWmbKxJSo6rzCCurSIkgEoU2FgoMAXtYUOC2RWm75lNyNa2PMzy2Godg0wWLbmg7dNhSaac0ZSBXl7b8yAymoZFmE13_g2m19_FYoAHLJgEka0f2IrHcheKyLWMbG-F3BaLEvvwBdjOVHe3NYaII1be1NbC38DjCeCb0PeDWyBhF_Xg87vgEAg4rj</recordid><startdate>20010901</startdate><enddate>20010901</enddate><creator>Gulmezoglu, M.B.</creator><creator>Dzhafarov, V.</creator><creator>Barkana, A.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20010901</creationdate><title>The common vector approach and its relation to principal component analysis</title><author>Gulmezoglu, M.B. ; Dzhafarov, V. ; Barkana, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Covariance matrix</topic><topic>Eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvectors</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Feature recognition</topic><topic>Information, signal and communications theory</topic><topic>Loudspeakers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Recognition</topic><topic>Signal processing</topic><topic>Speech</topic><topic>Speech processing</topic><topic>Speech recognition</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Testing</topic><topic>Two dimensional displays</topic><topic>Vectors</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gulmezoglu, M.B.</creatorcontrib><creatorcontrib>Dzhafarov, V.</creatorcontrib><creatorcontrib>Barkana, A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on speech and audio processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gulmezoglu, M.B.</au><au>Dzhafarov, V.</au><au>Barkana, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The common vector approach and its relation to principal component analysis</atitle><jtitle>IEEE transactions on speech and audio processing</jtitle><stitle>T-SAP</stitle><date>2001-09-01</date><risdate>2001</risdate><volume>9</volume><issue>6</issue><spage>655</spage><epage>662</epage><pages>655-662</pages><issn>1063-6676</issn><issn>2329-9290</issn><eissn>1558-2353</eissn><eissn>2329-9304</eissn><coden>IESPEJ</coden><abstract>The main point of the paper is to show the close relation between the nonzero principal components and the difference subspace together with the complementary close relation between the zero principal components and the common vector. A common vector representing each word-class is obtained from the eigenvectors of the covariance matrix of its own word-class; that is, the common vector is in the direction of a linear combination of the eigenvectors corresponding to the zero eigenvalues of the covariance matrix. The methods that use the nonzero principal components for recognition purposes suggest the elimination of all the features that are in the direction of the eigenvectors corresponding to the smallest eigenvalues (including the zero eigenvalues) of the covariance matrix whereas the common vector approach suggests the elimination of all the features that are in the direction of the eigenvectors corresponding to the largest, all nonzero eigenvalues of the covariance matrix.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/89.943343</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6676
ispartof IEEE transactions on speech and audio processing, 2001-09, Vol.9 (6), p.655-662
issn 1063-6676
2329-9290
1558-2353
2329-9304
language eng
recordid cdi_proquest_miscellaneous_28650612
source IEEE Electronic Library (IEL) Journals
subjects Applied sciences
Covariance matrix
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Equations
Exact sciences and technology
Feature recognition
Information, signal and communications theory
Loudspeakers
Mathematical analysis
Mathematics
Principal component analysis
Principal components analysis
Recognition
Signal processing
Speech
Speech processing
Speech recognition
Studies
Telecommunications and information theory
Testing
Two dimensional displays
Vectors
Vectors (mathematics)
title The common vector approach and its relation to principal component analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20common%20vector%20approach%20and%20its%20relation%20to%20principal%20component%20analysis&rft.jtitle=IEEE%20transactions%20on%20speech%20and%20audio%20processing&rft.au=Gulmezoglu,%20M.B.&rft.date=2001-09-01&rft.volume=9&rft.issue=6&rft.spage=655&rft.epage=662&rft.pages=655-662&rft.issn=1063-6676&rft.eissn=1558-2353&rft.coden=IESPEJ&rft_id=info:doi/10.1109/89.943343&rft_dat=%3Cproquest_pasca%3E2431644511%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c431t-a87479735f37676a0b27a353e7f4ded8fbce86e859ade538583bf0830be0c3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884618160&rft_id=info:pmid/&rft_ieee_id=943343&rfr_iscdi=true