Loading…

Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting

[Display omitted] •BiOI/β-Bi2O3 obtains excellent photocatalytic hydrogen evolution ability.•We unveil the transition dipole moment in BiOI/β-Bi2O3 heterojunction.•Photogenerated electrons are confined in β-Bi2O3 component of BiOI/β-Bi2O3.•BiOI/β-Bi2O3 can provide proper ΔGH* in hydrogen evolution p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2024-01, Vol.653 (Pt A), p.94-107
Main Authors: Shan, Lianwei, Fang, Zilan, Ding, Guodao, Shi, Ziqi, Dong, Limin, Li, Dan, Wu, Haitao, Li, Xuejiao, Suriyaprakash, Jagadeesh, Zhou, Yangtao, Xiao, Yanwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3
cites cdi_FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3
container_end_page 107
container_issue Pt A
container_start_page 94
container_title Journal of colloid and interface science
container_volume 653
creator Shan, Lianwei
Fang, Zilan
Ding, Guodao
Shi, Ziqi
Dong, Limin
Li, Dan
Wu, Haitao
Li, Xuejiao
Suriyaprakash, Jagadeesh
Zhou, Yangtao
Xiao, Yanwei
description [Display omitted] •BiOI/β-Bi2O3 obtains excellent photocatalytic hydrogen evolution ability.•We unveil the transition dipole moment in BiOI/β-Bi2O3 heterojunction.•Photogenerated electrons are confined in β-Bi2O3 component of BiOI/β-Bi2O3.•BiOI/β-Bi2O3 can provide proper ΔGH* in hydrogen evolution process.•BiOI/β-Bi2O3/H2O interface can lead to a proper electric double layer structure. In the realm of photocatalysis, understanding the interface issues (solid/solid and solid/liquid) inherent in heterojunction at the atomic level is the ultimate for engineering an efficient photocatalyst. Herein, an electrophoretic deposition technique is adopted to synthesize BiOI/β-Bi2O3 heterojunction, exhibiting superior photocatalytic activity and stability in H2 evolution (91.5 μmol g–1 h−1) and H2O2 production (11.3 mg L–1 h−1). Combined with the experimental and computational results, a lower free energy of hydrogen evolution reaction (252.4 meV) has been observed contrast to BiOI and β-Bi2O3 samples. A carrier transfer process of like S-scheme heterojunction is proposed based on density of states (DOS) and carrier distribution calculations. The theoretical calculations illustrate the transition dipole moment, migration and accumulation of carrier in BiOI/β-Bi2O3 heterojunction. Subsequent ab initio molecular dynamics (AIMD) results of solid/liquid interface systems (BiOI/β-Bi2O3/H2O and β-Bi2O3/H2O) unravel the interface H2O (solvent) behaviors. The local aggregation of photo-generated electrons in BiOI/β-Bi2O3/H2O leads to a large potential drop, high proton migration rate and the steady electric double layer (EDL) structure compared to the β-Bi2O3/H2O, which facilitates the occurrence of photocatalytic reactions in solution. In addition to offering new insights into the hydrogen evolution and proton transfer in the EDL model and the association between the heterojunction effect and EDL structure, this work also introduces a novel design strategy for Bi-based heterojunctions.
doi_str_mv 10.1016/j.jcis.2023.09.059
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2865788795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979723017575</els_id><sourcerecordid>2865788795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3</originalsourceid><addsrcrecordid>eNqFkc1qGzEUhUVpoG6SF-hKy25moh9rRoJuauM0BoM37VpopKtEZjxyJLnFr5UH6TNFrrNOVxcu37mXcw5CXyhpKaHd3a7d2ZBbRhhviWqJUB_QjBIlmp4S_hHNCGG0Ub3qP6HPOe8IoVQINUPPqxFsSXHCNk4-TLCHqeBDivtYwOHyBBj-EcFiF4_DCHg0J0gYvK9rHD1ehO367u9Lswhsy3GY8OEplmhNMeOpVNkfUyqfD2MoJUyPN-jKmzHD7du8Rr_uVz-XD81m-2O9_L5pLJO0NEYMtpPD4GQ3d1waPlDrpKxP6aDMnHAmiLKUyflAjRO-oxIYF94L4awC4Nfo6-VuNfN8hFz0PmQL42gmiMesORVcCl5z-C_KZCd6KXt1RtkFtSnmnMDrQwp7k06aEn2uQu_0uQp9rkITpWsVVfTtIoLq93eApLMNMFlwIdUQtYvhPfkrX9SUdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865788795</pqid></control><display><type>article</type><title>Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting</title><source>ScienceDirect Journals</source><creator>Shan, Lianwei ; Fang, Zilan ; Ding, Guodao ; Shi, Ziqi ; Dong, Limin ; Li, Dan ; Wu, Haitao ; Li, Xuejiao ; Suriyaprakash, Jagadeesh ; Zhou, Yangtao ; Xiao, Yanwei</creator><creatorcontrib>Shan, Lianwei ; Fang, Zilan ; Ding, Guodao ; Shi, Ziqi ; Dong, Limin ; Li, Dan ; Wu, Haitao ; Li, Xuejiao ; Suriyaprakash, Jagadeesh ; Zhou, Yangtao ; Xiao, Yanwei</creatorcontrib><description>[Display omitted] •BiOI/β-Bi2O3 obtains excellent photocatalytic hydrogen evolution ability.•We unveil the transition dipole moment in BiOI/β-Bi2O3 heterojunction.•Photogenerated electrons are confined in β-Bi2O3 component of BiOI/β-Bi2O3.•BiOI/β-Bi2O3 can provide proper ΔGH* in hydrogen evolution process.•BiOI/β-Bi2O3/H2O interface can lead to a proper electric double layer structure. In the realm of photocatalysis, understanding the interface issues (solid/solid and solid/liquid) inherent in heterojunction at the atomic level is the ultimate for engineering an efficient photocatalyst. Herein, an electrophoretic deposition technique is adopted to synthesize BiOI/β-Bi2O3 heterojunction, exhibiting superior photocatalytic activity and stability in H2 evolution (91.5 μmol g–1 h−1) and H2O2 production (11.3 mg L–1 h−1). Combined with the experimental and computational results, a lower free energy of hydrogen evolution reaction (252.4 meV) has been observed contrast to BiOI and β-Bi2O3 samples. A carrier transfer process of like S-scheme heterojunction is proposed based on density of states (DOS) and carrier distribution calculations. The theoretical calculations illustrate the transition dipole moment, migration and accumulation of carrier in BiOI/β-Bi2O3 heterojunction. Subsequent ab initio molecular dynamics (AIMD) results of solid/liquid interface systems (BiOI/β-Bi2O3/H2O and β-Bi2O3/H2O) unravel the interface H2O (solvent) behaviors. The local aggregation of photo-generated electrons in BiOI/β-Bi2O3/H2O leads to a large potential drop, high proton migration rate and the steady electric double layer (EDL) structure compared to the β-Bi2O3/H2O, which facilitates the occurrence of photocatalytic reactions in solution. In addition to offering new insights into the hydrogen evolution and proton transfer in the EDL model and the association between the heterojunction effect and EDL structure, this work also introduces a novel design strategy for Bi-based heterojunctions.</description><identifier>ISSN: 0021-9797</identifier><identifier>ISSN: 1095-7103</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2023.09.059</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Confinement ; domain ; Electric double layer ; electrophoresis ; Gibbs free energy ; hydrogen production ; liquids ; molecular dynamics ; Photocatalysis ; photocatalysts ; S-scheme heterojunction ; solvents</subject><ispartof>Journal of colloid and interface science, 2024-01, Vol.653 (Pt A), p.94-107</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3</citedby><cites>FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3</cites><orcidid>0000-0001-6989-280X ; 0000-0001-7269-2841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Shan, Lianwei</creatorcontrib><creatorcontrib>Fang, Zilan</creatorcontrib><creatorcontrib>Ding, Guodao</creatorcontrib><creatorcontrib>Shi, Ziqi</creatorcontrib><creatorcontrib>Dong, Limin</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Wu, Haitao</creatorcontrib><creatorcontrib>Li, Xuejiao</creatorcontrib><creatorcontrib>Suriyaprakash, Jagadeesh</creatorcontrib><creatorcontrib>Zhou, Yangtao</creatorcontrib><creatorcontrib>Xiao, Yanwei</creatorcontrib><title>Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting</title><title>Journal of colloid and interface science</title><description>[Display omitted] •BiOI/β-Bi2O3 obtains excellent photocatalytic hydrogen evolution ability.•We unveil the transition dipole moment in BiOI/β-Bi2O3 heterojunction.•Photogenerated electrons are confined in β-Bi2O3 component of BiOI/β-Bi2O3.•BiOI/β-Bi2O3 can provide proper ΔGH* in hydrogen evolution process.•BiOI/β-Bi2O3/H2O interface can lead to a proper electric double layer structure. In the realm of photocatalysis, understanding the interface issues (solid/solid and solid/liquid) inherent in heterojunction at the atomic level is the ultimate for engineering an efficient photocatalyst. Herein, an electrophoretic deposition technique is adopted to synthesize BiOI/β-Bi2O3 heterojunction, exhibiting superior photocatalytic activity and stability in H2 evolution (91.5 μmol g–1 h−1) and H2O2 production (11.3 mg L–1 h−1). Combined with the experimental and computational results, a lower free energy of hydrogen evolution reaction (252.4 meV) has been observed contrast to BiOI and β-Bi2O3 samples. A carrier transfer process of like S-scheme heterojunction is proposed based on density of states (DOS) and carrier distribution calculations. The theoretical calculations illustrate the transition dipole moment, migration and accumulation of carrier in BiOI/β-Bi2O3 heterojunction. Subsequent ab initio molecular dynamics (AIMD) results of solid/liquid interface systems (BiOI/β-Bi2O3/H2O and β-Bi2O3/H2O) unravel the interface H2O (solvent) behaviors. The local aggregation of photo-generated electrons in BiOI/β-Bi2O3/H2O leads to a large potential drop, high proton migration rate and the steady electric double layer (EDL) structure compared to the β-Bi2O3/H2O, which facilitates the occurrence of photocatalytic reactions in solution. In addition to offering new insights into the hydrogen evolution and proton transfer in the EDL model and the association between the heterojunction effect and EDL structure, this work also introduces a novel design strategy for Bi-based heterojunctions.</description><subject>Confinement</subject><subject>domain</subject><subject>Electric double layer</subject><subject>electrophoresis</subject><subject>Gibbs free energy</subject><subject>hydrogen production</subject><subject>liquids</subject><subject>molecular dynamics</subject><subject>Photocatalysis</subject><subject>photocatalysts</subject><subject>S-scheme heterojunction</subject><subject>solvents</subject><issn>0021-9797</issn><issn>1095-7103</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkc1qGzEUhUVpoG6SF-hKy25moh9rRoJuauM0BoM37VpopKtEZjxyJLnFr5UH6TNFrrNOVxcu37mXcw5CXyhpKaHd3a7d2ZBbRhhviWqJUB_QjBIlmp4S_hHNCGG0Ub3qP6HPOe8IoVQINUPPqxFsSXHCNk4-TLCHqeBDivtYwOHyBBj-EcFiF4_DCHg0J0gYvK9rHD1ehO367u9Lswhsy3GY8OEplmhNMeOpVNkfUyqfD2MoJUyPN-jKmzHD7du8Rr_uVz-XD81m-2O9_L5pLJO0NEYMtpPD4GQ3d1waPlDrpKxP6aDMnHAmiLKUyflAjRO-oxIYF94L4awC4Nfo6-VuNfN8hFz0PmQL42gmiMesORVcCl5z-C_KZCd6KXt1RtkFtSnmnMDrQwp7k06aEn2uQu_0uQp9rkITpWsVVfTtIoLq93eApLMNMFlwIdUQtYvhPfkrX9SUdw</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Shan, Lianwei</creator><creator>Fang, Zilan</creator><creator>Ding, Guodao</creator><creator>Shi, Ziqi</creator><creator>Dong, Limin</creator><creator>Li, Dan</creator><creator>Wu, Haitao</creator><creator>Li, Xuejiao</creator><creator>Suriyaprakash, Jagadeesh</creator><creator>Zhou, Yangtao</creator><creator>Xiao, Yanwei</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-6989-280X</orcidid><orcidid>https://orcid.org/0000-0001-7269-2841</orcidid></search><sort><creationdate>20240101</creationdate><title>Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting</title><author>Shan, Lianwei ; Fang, Zilan ; Ding, Guodao ; Shi, Ziqi ; Dong, Limin ; Li, Dan ; Wu, Haitao ; Li, Xuejiao ; Suriyaprakash, Jagadeesh ; Zhou, Yangtao ; Xiao, Yanwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Confinement</topic><topic>domain</topic><topic>Electric double layer</topic><topic>electrophoresis</topic><topic>Gibbs free energy</topic><topic>hydrogen production</topic><topic>liquids</topic><topic>molecular dynamics</topic><topic>Photocatalysis</topic><topic>photocatalysts</topic><topic>S-scheme heterojunction</topic><topic>solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shan, Lianwei</creatorcontrib><creatorcontrib>Fang, Zilan</creatorcontrib><creatorcontrib>Ding, Guodao</creatorcontrib><creatorcontrib>Shi, Ziqi</creatorcontrib><creatorcontrib>Dong, Limin</creatorcontrib><creatorcontrib>Li, Dan</creatorcontrib><creatorcontrib>Wu, Haitao</creatorcontrib><creatorcontrib>Li, Xuejiao</creatorcontrib><creatorcontrib>Suriyaprakash, Jagadeesh</creatorcontrib><creatorcontrib>Zhou, Yangtao</creatorcontrib><creatorcontrib>Xiao, Yanwei</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shan, Lianwei</au><au>Fang, Zilan</au><au>Ding, Guodao</au><au>Shi, Ziqi</au><au>Dong, Limin</au><au>Li, Dan</au><au>Wu, Haitao</au><au>Li, Xuejiao</au><au>Suriyaprakash, Jagadeesh</au><au>Zhou, Yangtao</au><au>Xiao, Yanwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>653</volume><issue>Pt A</issue><spage>94</spage><epage>107</epage><pages>94-107</pages><issn>0021-9797</issn><issn>1095-7103</issn><eissn>1095-7103</eissn><abstract>[Display omitted] •BiOI/β-Bi2O3 obtains excellent photocatalytic hydrogen evolution ability.•We unveil the transition dipole moment in BiOI/β-Bi2O3 heterojunction.•Photogenerated electrons are confined in β-Bi2O3 component of BiOI/β-Bi2O3.•BiOI/β-Bi2O3 can provide proper ΔGH* in hydrogen evolution process.•BiOI/β-Bi2O3/H2O interface can lead to a proper electric double layer structure. In the realm of photocatalysis, understanding the interface issues (solid/solid and solid/liquid) inherent in heterojunction at the atomic level is the ultimate for engineering an efficient photocatalyst. Herein, an electrophoretic deposition technique is adopted to synthesize BiOI/β-Bi2O3 heterojunction, exhibiting superior photocatalytic activity and stability in H2 evolution (91.5 μmol g–1 h−1) and H2O2 production (11.3 mg L–1 h−1). Combined with the experimental and computational results, a lower free energy of hydrogen evolution reaction (252.4 meV) has been observed contrast to BiOI and β-Bi2O3 samples. A carrier transfer process of like S-scheme heterojunction is proposed based on density of states (DOS) and carrier distribution calculations. The theoretical calculations illustrate the transition dipole moment, migration and accumulation of carrier in BiOI/β-Bi2O3 heterojunction. Subsequent ab initio molecular dynamics (AIMD) results of solid/liquid interface systems (BiOI/β-Bi2O3/H2O and β-Bi2O3/H2O) unravel the interface H2O (solvent) behaviors. The local aggregation of photo-generated electrons in BiOI/β-Bi2O3/H2O leads to a large potential drop, high proton migration rate and the steady electric double layer (EDL) structure compared to the β-Bi2O3/H2O, which facilitates the occurrence of photocatalytic reactions in solution. In addition to offering new insights into the hydrogen evolution and proton transfer in the EDL model and the association between the heterojunction effect and EDL structure, this work also introduces a novel design strategy for Bi-based heterojunctions.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2023.09.059</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6989-280X</orcidid><orcidid>https://orcid.org/0000-0001-7269-2841</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2024-01, Vol.653 (Pt A), p.94-107
issn 0021-9797
1095-7103
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2865788795
source ScienceDirect Journals
subjects Confinement
domain
Electric double layer
electrophoresis
Gibbs free energy
hydrogen production
liquids
molecular dynamics
Photocatalysis
photocatalysts
S-scheme heterojunction
solvents
title Electron confinement promoted the electric double layer effect of BiOI/β-Bi2O3 in photocatalytic water splitting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20confinement%20promoted%20the%20electric%20double%20layer%20effect%20of%20BiOI/%CE%B2-Bi2O3%20in%20photocatalytic%20water%20splitting&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Shan,%20Lianwei&rft.date=2024-01-01&rft.volume=653&rft.issue=Pt%20A&rft.spage=94&rft.epage=107&rft.pages=94-107&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2023.09.059&rft_dat=%3Cproquest_cross%3E2865788795%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-a5bc68bbd864d38a3b1cd88fec1b9a4032509c1284b1ad5f618e235ff55dc9ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865788795&rft_id=info:pmid/&rfr_iscdi=true