Loading…

Terahertz attenuation and dispersion characteristics of coplanar transmission lines

Experimental verification of analytic formulas for the dispersion and the attenuation of electrical transient signals propagating on coplanar transmission lines is presented. The verification is done in the frequency domain over a terahertz range although the experiments are in the time domain. The...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on microwave theory and techniques 1991-06, Vol.39 (6), p.910-916
Main Authors: Frankel, M.Y., Gupta, S., Valdmanis, J.A., Mourou, G.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Experimental verification of analytic formulas for the dispersion and the attenuation of electrical transient signals propagating on coplanar transmission lines is presented. The verification is done in the frequency domain over a terahertz range although the experiments are in the time domain. The analytic formulas are obtained from fits to the full-wave analysis results. It is quantitatively verified that the full-wave steady-state solutions can be directly applied to the transient time-domain propagation experiments. Subpicosecond electrical pulses and an external electrooptic sampling technique are used to obtain the time-domain propagation data. From the Fourier transforms of the time-domain data both the attenuation and the phase information as a function of frequency are extracted. The dispersion and the attenuation characteristics are investigated for both coplanar waveguide and coplanar strip transmission lines. The investigation is carried out on both semiinsulating semiconductor and dielectric substrate materials. No observable losses caused by the semiconductor material are indicated.< >
ISSN:0018-9480
1557-9670
DOI:10.1109/22.81658