Loading…

Nanomaterials-based aptasensors: An efficient detection tool for heavy-metal and metalloid ions in environmental and biological samples

In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such a...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2023-12, Vol.238, p.117170-117170, Article 117170
Main Authors: Azzouz, Abdelmonaim, Hejji, Lamia, Kumar, Vanish, Kim, Ki-Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In light of potential risks of heavy metal exposure, diverse aptasensors have been developed through the combination of aptamers with nanomaterials for the timely and efficient detection of metals in environmental and biological matrices. Aptamer-based sensors can benefit from multiple merits such as heightened sensitivity, facile production, uncomplicated operation, exceptional specificity, enhanced stability, low immunogenicity, and cost-effectiveness. This review highlights the detection capabilities of nanomaterial-based aptasensors for heavy-metal and metalloid ions based on their performance in terms of the basic quality assurance parameters (e.g., limit of detection, linear dynamic range, and response time). Out of covered studies, dendrimer/CdTe@CdS QDs-based ECL aptasensor was found as the most sensitive option with an LOD of 2.0 aM (atto-molar: 10-18 M) detection for Hg2+. The existing challenges in the nanomaterial-based aptasensors and their scientific solutions are also discussed. [Display omitted]
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2023.117170