Loading…

Optimization of Flapping Airfoils For Maximum Thrust and Propulsive Efficiency

The thrust and/or propulsive efficiency of a single flapping airfoil is maximized by using a numerical optimization method based on the steepest ascent. The flapping motion of the airfoil is described by a combined sinusoidal plunge and pitching motion. Optimization parameters are taken to be the am...

Full description

Saved in:
Bibliographic Details
Published in:AIAA journal 2005-11, Vol.43 (11), p.2329-2336
Main Authors: Tuncer, Ismail H, Kaya, Mustafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The thrust and/or propulsive efficiency of a single flapping airfoil is maximized by using a numerical optimization method based on the steepest ascent. The flapping motion of the airfoil is described by a combined sinusoidal plunge and pitching motion. Optimization parameters are taken to be the amplitudes of the plunge and pitching motions and the phase shift between them at a fixed flapping frequency. Two-dimensional, unsteady, low-speed, laminar, and turbulent flows are computed by using a Navier-Stokes solver on moving overset grids. Computations are performed in parallel in a computer cluster. The optimization data show that high thrust values may be obtained at the expense of propulsive efficiency. For a high propulsive efficiency, the effective angle of attack of the airfoil is reduced, and large-scale vortex formations at the leading edge are prevented.
ISSN:0001-1452
1533-385X
DOI:10.2514/1.816