Loading…
Experimental study of aluminum-induced crystallization of amorphous silicon thin films
This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to th...
Saved in:
Published in: | Surface & coatings technology 2005-08, Vol.198 (1), p.300-303 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to the a-Si film at different thicknesses. The samples were annealed for 3 h at different temperatures from 250 to 550 °C. The annealed silicon films were analyzed with emphasis on their crystallinity and morphology. Results showed that in the presence of aluminum, a-Si film started crystallization at a temperature as low as 250 °C. However, high crystallization rate would be achieved only when the annealing was done at temperatures higher than 350 °C. For practical applications, this temperature might well be the lower limit in AIC method for crystallization of silicon. The thickness of aluminum film was found to play a critical role that dictated the extent of crystallization and the preferred orientation of the resulting polycrystalline thin film. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2004.10.092 |