Loading…

Experimental study of aluminum-induced crystallization of amorphous silicon thin films

This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to th...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2005-08, Vol.198 (1), p.300-303
Main Authors: Qi, G.J., Zhang, S., Tang, T.T., Li, J.F., Sun, X.W., Zeng, X.T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work was an experimental study of the aluminum-induced crystallization (AIC) of amorphous silicon (a-Si) for the fabrication of polycrystalline silicon film. The a-Si film was deposited on silicon wafer by low pressure chemical vapor deposition (LPCVD) technique. Aluminum was sputtered on to the a-Si film at different thicknesses. The samples were annealed for 3 h at different temperatures from 250 to 550 °C. The annealed silicon films were analyzed with emphasis on their crystallinity and morphology. Results showed that in the presence of aluminum, a-Si film started crystallization at a temperature as low as 250 °C. However, high crystallization rate would be achieved only when the annealing was done at temperatures higher than 350 °C. For practical applications, this temperature might well be the lower limit in AIC method for crystallization of silicon. The thickness of aluminum film was found to play a critical role that dictated the extent of crystallization and the preferred orientation of the resulting polycrystalline thin film.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2004.10.092