Loading…

Statistical analysis of functional MRI data in the wavelet domain

The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical imaging 1998-04, Vol.17 (2), p.142-154
Main Authors: Ruttimann, U.E., Unser, M., Rawlings, R.R., Rio, D., Ramsey, N.F., Mattay, V.S., Hommer, D.W., Frank, J.A., Weinberger, D.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33
cites cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33
container_end_page 154
container_issue 2
container_start_page 142
container_title IEEE transactions on medical imaging
container_volume 17
creator Ruttimann, U.E.
Unser, M.
Rawlings, R.R.
Rio, D.
Ramsey, N.F.
Mattay, V.S.
Hommer, D.W.
Frank, J.A.
Weinberger, D.R.
description The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.
doi_str_mv 10.1109/42.700727
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28667956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>700727</ieee_id><sourcerecordid>28667956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRaq0evArCHkTwkDq72ewmx1L8KFQE7cFb2GZncSVNNLtR-u9NSehVTzPM-8wH7xByzmDKGGS3gk8VgOLqgIxZkqQRT8TbIRkDV2kEIPkxOfH-A4CJBLIRGWUyTZlQYzJ7DTo4H1yhS6orXW6987S21LZVEVzdVejTy4IaHTR1FQ3vSH_0N5YYqKk32lWn5Mjq0uPZECdkdX-3mj9Gy-eHxXy2jArBkxDZGMU6YdqulWYJE8LaLLVYcGMBpbWGS8yKXQqAsDuPma4BOMYGTRxPyHU_9rOpv1r0Id84X2BZ6grr1ucpgIg5k3-CPJVSZck_QBYrJqXowJseLJra-wZt_tm4jW62OYN8538ueN7737GXw9B2vUGzJwfDO_1q0LXvLLeNrgrn9xiPhex-12EXPeYQca8OO34BXtGT_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21371664</pqid></control><display><type>article</type><title>Statistical analysis of functional MRI data in the wavelet domain</title><source>IEEE Xplore (Online service)</source><creator>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</creator><creatorcontrib>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</creatorcontrib><description>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.700727</identifier><identifier>PMID: 9688147</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adult ; Algorithms ; Bandwidth ; Biological and medical sciences ; Brain - physiology ; Echo-Planar Imaging - methods ; Echo-Planar Imaging - statistics &amp; numerical data ; Fingers - physiology ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics &amp; numerical data ; Investigative techniques, diagnostic techniques (general aspects) ; Linear Models ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Medical sciences ; Motor Skills - physiology ; Nervous system ; Normal Distribution ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Signal detection ; Signal to noise ratio ; Statistical analysis ; Statistical tests ; Testing ; Wavelet analysis ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms</subject><ispartof>IEEE transactions on medical imaging, 1998-04, Vol.17 (2), p.142-154</ispartof><rights>1998 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</citedby><cites>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/700727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2346254$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9688147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruttimann, U.E.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><creatorcontrib>Rawlings, R.R.</creatorcontrib><creatorcontrib>Rio, D.</creatorcontrib><creatorcontrib>Ramsey, N.F.</creatorcontrib><creatorcontrib>Mattay, V.S.</creatorcontrib><creatorcontrib>Hommer, D.W.</creatorcontrib><creatorcontrib>Frank, J.A.</creatorcontrib><creatorcontrib>Weinberger, D.R.</creatorcontrib><title>Statistical analysis of functional MRI data in the wavelet domain</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Biological and medical sciences</subject><subject>Brain - physiology</subject><subject>Echo-Planar Imaging - methods</subject><subject>Echo-Planar Imaging - statistics &amp; numerical data</subject><subject>Fingers - physiology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics &amp; numerical data</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear Models</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Medical sciences</subject><subject>Motor Skills - physiology</subject><subject>Nervous system</subject><subject>Normal Distribution</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Testing</subject><subject>Wavelet analysis</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRaq0evArCHkTwkDq72ewmx1L8KFQE7cFb2GZncSVNNLtR-u9NSehVTzPM-8wH7xByzmDKGGS3gk8VgOLqgIxZkqQRT8TbIRkDV2kEIPkxOfH-A4CJBLIRGWUyTZlQYzJ7DTo4H1yhS6orXW6987S21LZVEVzdVejTy4IaHTR1FQ3vSH_0N5YYqKk32lWn5Mjq0uPZECdkdX-3mj9Gy-eHxXy2jArBkxDZGMU6YdqulWYJE8LaLLVYcGMBpbWGS8yKXQqAsDuPma4BOMYGTRxPyHU_9rOpv1r0Id84X2BZ6grr1ucpgIg5k3-CPJVSZck_QBYrJqXowJseLJra-wZt_tm4jW62OYN8538ueN7737GXw9B2vUGzJwfDO_1q0LXvLLeNrgrn9xiPhex-12EXPeYQca8OO34BXtGT_g</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Ruttimann, U.E.</creator><creator>Unser, M.</creator><creator>Rawlings, R.R.</creator><creator>Rio, D.</creator><creator>Ramsey, N.F.</creator><creator>Mattay, V.S.</creator><creator>Hommer, D.W.</creator><creator>Frank, J.A.</creator><creator>Weinberger, D.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>Statistical analysis of functional MRI data in the wavelet domain</title><author>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Biological and medical sciences</topic><topic>Brain - physiology</topic><topic>Echo-Planar Imaging - methods</topic><topic>Echo-Planar Imaging - statistics &amp; numerical data</topic><topic>Fingers - physiology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics &amp; numerical data</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear Models</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Medical sciences</topic><topic>Motor Skills - physiology</topic><topic>Nervous system</topic><topic>Normal Distribution</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Testing</topic><topic>Wavelet analysis</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruttimann, U.E.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><creatorcontrib>Rawlings, R.R.</creatorcontrib><creatorcontrib>Rio, D.</creatorcontrib><creatorcontrib>Ramsey, N.F.</creatorcontrib><creatorcontrib>Mattay, V.S.</creatorcontrib><creatorcontrib>Hommer, D.W.</creatorcontrib><creatorcontrib>Frank, J.A.</creatorcontrib><creatorcontrib>Weinberger, D.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruttimann, U.E.</au><au>Unser, M.</au><au>Rawlings, R.R.</au><au>Rio, D.</au><au>Ramsey, N.F.</au><au>Mattay, V.S.</au><au>Hommer, D.W.</au><au>Frank, J.A.</au><au>Weinberger, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analysis of functional MRI data in the wavelet domain</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>142</spage><epage>154</epage><pages>142-154</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>9688147</pmid><doi>10.1109/42.700727</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 1998-04, Vol.17 (2), p.142-154
issn 0278-0062
1558-254X
language eng
recordid cdi_proquest_miscellaneous_28667956
source IEEE Xplore (Online service)
subjects Adult
Algorithms
Bandwidth
Biological and medical sciences
Brain - physiology
Echo-Planar Imaging - methods
Echo-Planar Imaging - statistics & numerical data
Fingers - physiology
Humans
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - statistics & numerical data
Investigative techniques, diagnostic techniques (general aspects)
Linear Models
Magnetic resonance
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - statistics & numerical data
Medical sciences
Motor Skills - physiology
Nervous system
Normal Distribution
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Sensitivity and Specificity
Signal detection
Signal to noise ratio
Statistical analysis
Statistical tests
Testing
Wavelet analysis
Wavelet coefficients
Wavelet domain
Wavelet transforms
title Statistical analysis of functional MRI data in the wavelet domain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analysis%20of%20functional%20MRI%20data%20in%20the%20wavelet%20domain&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ruttimann,%20U.E.&rft.date=1998-04-01&rft.volume=17&rft.issue=2&rft.spage=142&rft.epage=154&rft.pages=142-154&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.700727&rft_dat=%3Cproquest_pasca%3E28667956%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21371664&rft_id=info:pmid/9688147&rft_ieee_id=700727&rfr_iscdi=true