Loading…
Statistical analysis of functional MRI data in the wavelet domain
The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small...
Saved in:
Published in: | IEEE transactions on medical imaging 1998-04, Vol.17 (2), p.142-154 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33 |
container_end_page | 154 |
container_issue | 2 |
container_start_page | 142 |
container_title | IEEE transactions on medical imaging |
container_volume | 17 |
creator | Ruttimann, U.E. Unser, M. Rawlings, R.R. Rio, D. Ramsey, N.F. Mattay, V.S. Hommer, D.W. Frank, J.A. Weinberger, D.R. |
description | The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing. |
doi_str_mv | 10.1109/42.700727 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_28667956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>700727</ieee_id><sourcerecordid>28667956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRaq0evArCHkTwkDq72ewmx1L8KFQE7cFb2GZncSVNNLtR-u9NSehVTzPM-8wH7xByzmDKGGS3gk8VgOLqgIxZkqQRT8TbIRkDV2kEIPkxOfH-A4CJBLIRGWUyTZlQYzJ7DTo4H1yhS6orXW6987S21LZVEVzdVejTy4IaHTR1FQ3vSH_0N5YYqKk32lWn5Mjq0uPZECdkdX-3mj9Gy-eHxXy2jArBkxDZGMU6YdqulWYJE8LaLLVYcGMBpbWGS8yKXQqAsDuPma4BOMYGTRxPyHU_9rOpv1r0Id84X2BZ6grr1ucpgIg5k3-CPJVSZck_QBYrJqXowJseLJra-wZt_tm4jW62OYN8538ueN7737GXw9B2vUGzJwfDO_1q0LXvLLeNrgrn9xiPhex-12EXPeYQca8OO34BXtGT_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21371664</pqid></control><display><type>article</type><title>Statistical analysis of functional MRI data in the wavelet domain</title><source>IEEE Xplore (Online service)</source><creator>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</creator><creatorcontrib>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</creatorcontrib><description>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/42.700727</identifier><identifier>PMID: 9688147</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adult ; Algorithms ; Bandwidth ; Biological and medical sciences ; Brain - physiology ; Echo-Planar Imaging - methods ; Echo-Planar Imaging - statistics & numerical data ; Fingers - physiology ; Humans ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Image Processing, Computer-Assisted - statistics & numerical data ; Investigative techniques, diagnostic techniques (general aspects) ; Linear Models ; Magnetic resonance ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - statistics & numerical data ; Medical sciences ; Motor Skills - physiology ; Nervous system ; Normal Distribution ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Sensitivity and Specificity ; Signal detection ; Signal to noise ratio ; Statistical analysis ; Statistical tests ; Testing ; Wavelet analysis ; Wavelet coefficients ; Wavelet domain ; Wavelet transforms</subject><ispartof>IEEE transactions on medical imaging, 1998-04, Vol.17 (2), p.142-154</ispartof><rights>1998 INIST-CNRS</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</citedby><cites>FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/700727$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2346254$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9688147$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruttimann, U.E.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><creatorcontrib>Rawlings, R.R.</creatorcontrib><creatorcontrib>Rio, D.</creatorcontrib><creatorcontrib>Ramsey, N.F.</creatorcontrib><creatorcontrib>Mattay, V.S.</creatorcontrib><creatorcontrib>Hommer, D.W.</creatorcontrib><creatorcontrib>Frank, J.A.</creatorcontrib><creatorcontrib>Weinberger, D.R.</creatorcontrib><title>Statistical analysis of functional MRI data in the wavelet domain</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Biological and medical sciences</subject><subject>Brain - physiology</subject><subject>Echo-Planar Imaging - methods</subject><subject>Echo-Planar Imaging - statistics & numerical data</subject><subject>Fingers - physiology</subject><subject>Humans</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image Processing, Computer-Assisted - statistics & numerical data</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear Models</subject><subject>Magnetic resonance</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - statistics & numerical data</subject><subject>Medical sciences</subject><subject>Motor Skills - physiology</subject><subject>Nervous system</subject><subject>Normal Distribution</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Sensitivity and Specificity</subject><subject>Signal detection</subject><subject>Signal to noise ratio</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Testing</subject><subject>Wavelet analysis</subject><subject>Wavelet coefficients</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRaq0evArCHkTwkDq72ewmx1L8KFQE7cFb2GZncSVNNLtR-u9NSehVTzPM-8wH7xByzmDKGGS3gk8VgOLqgIxZkqQRT8TbIRkDV2kEIPkxOfH-A4CJBLIRGWUyTZlQYzJ7DTo4H1yhS6orXW6987S21LZVEVzdVejTy4IaHTR1FQ3vSH_0N5YYqKk32lWn5Mjq0uPZECdkdX-3mj9Gy-eHxXy2jArBkxDZGMU6YdqulWYJE8LaLLVYcGMBpbWGS8yKXQqAsDuPma4BOMYGTRxPyHU_9rOpv1r0Id84X2BZ6grr1ucpgIg5k3-CPJVSZck_QBYrJqXowJseLJra-wZt_tm4jW62OYN8538ueN7737GXw9B2vUGzJwfDO_1q0LXvLLeNrgrn9xiPhex-12EXPeYQca8OO34BXtGT_g</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Ruttimann, U.E.</creator><creator>Unser, M.</creator><creator>Rawlings, R.R.</creator><creator>Rio, D.</creator><creator>Ramsey, N.F.</creator><creator>Mattay, V.S.</creator><creator>Hommer, D.W.</creator><creator>Frank, J.A.</creator><creator>Weinberger, D.R.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>Statistical analysis of functional MRI data in the wavelet domain</title><author>Ruttimann, U.E. ; Unser, M. ; Rawlings, R.R. ; Rio, D. ; Ramsey, N.F. ; Mattay, V.S. ; Hommer, D.W. ; Frank, J.A. ; Weinberger, D.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Biological and medical sciences</topic><topic>Brain - physiology</topic><topic>Echo-Planar Imaging - methods</topic><topic>Echo-Planar Imaging - statistics & numerical data</topic><topic>Fingers - physiology</topic><topic>Humans</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image Processing, Computer-Assisted - statistics & numerical data</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear Models</topic><topic>Magnetic resonance</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - statistics & numerical data</topic><topic>Medical sciences</topic><topic>Motor Skills - physiology</topic><topic>Nervous system</topic><topic>Normal Distribution</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Sensitivity and Specificity</topic><topic>Signal detection</topic><topic>Signal to noise ratio</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Testing</topic><topic>Wavelet analysis</topic><topic>Wavelet coefficients</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ruttimann, U.E.</creatorcontrib><creatorcontrib>Unser, M.</creatorcontrib><creatorcontrib>Rawlings, R.R.</creatorcontrib><creatorcontrib>Rio, D.</creatorcontrib><creatorcontrib>Ramsey, N.F.</creatorcontrib><creatorcontrib>Mattay, V.S.</creatorcontrib><creatorcontrib>Hommer, D.W.</creatorcontrib><creatorcontrib>Frank, J.A.</creatorcontrib><creatorcontrib>Weinberger, D.R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruttimann, U.E.</au><au>Unser, M.</au><au>Rawlings, R.R.</au><au>Rio, D.</au><au>Ramsey, N.F.</au><au>Mattay, V.S.</au><au>Hommer, D.W.</au><au>Frank, J.A.</au><au>Weinberger, D.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical analysis of functional MRI data in the wavelet domain</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>17</volume><issue>2</issue><spage>142</spage><epage>154</epage><pages>142-154</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>The use of the wavelet transform is explored for the detection of differences between brain functional magnetic resonance images (fMRIs) acquired under two different experimental conditions. The method benefits from the fact that a smooth and spatially localized signal can be represented by a small set of localized wavelet coefficients, while the power of white noise is uniformly spread throughout the wavelet space. Hence, a statistical procedure is developed that uses the imposed decomposition orthogonality to locate wavelet-space partitions with large signal-to-noise ratio (SNR), and subsequently restricts the testing for significant wavelet coefficients to these partitions. This results in a higher SNR and a smaller number of statistical tests, yielding a lower detection threshold compared to spatial-domain testing and, thus, a higher detection sensitivity without increasing type I errors. The multiresolution approach of the wavelet method is particularly suited to applications where the signal bandwidth and/or the characteristics of an imaging modality cannot be well specified. The proposed method was applied to compare two different fMRI acquisition modalities, Differences of the respective useful signal bandwidths could be clearly demonstrated; the estimated signal, due to the smoothness of the wavelet representation, yielded more compact regions of neuroactivity than standard spatial-domain testing.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>9688147</pmid><doi>10.1109/42.700727</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 1998-04, Vol.17 (2), p.142-154 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_proquest_miscellaneous_28667956 |
source | IEEE Xplore (Online service) |
subjects | Adult Algorithms Bandwidth Biological and medical sciences Brain - physiology Echo-Planar Imaging - methods Echo-Planar Imaging - statistics & numerical data Fingers - physiology Humans Image Enhancement - methods Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - statistics & numerical data Investigative techniques, diagnostic techniques (general aspects) Linear Models Magnetic resonance Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetic Resonance Imaging - statistics & numerical data Medical sciences Motor Skills - physiology Nervous system Normal Distribution Radiodiagnosis. Nmr imagery. Nmr spectrometry Sensitivity and Specificity Signal detection Signal to noise ratio Statistical analysis Statistical tests Testing Wavelet analysis Wavelet coefficients Wavelet domain Wavelet transforms |
title | Statistical analysis of functional MRI data in the wavelet domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A54%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20analysis%20of%20functional%20MRI%20data%20in%20the%20wavelet%20domain&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Ruttimann,%20U.E.&rft.date=1998-04-01&rft.volume=17&rft.issue=2&rft.spage=142&rft.epage=154&rft.pages=142-154&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/42.700727&rft_dat=%3Cproquest_pasca%3E28667956%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-f3e4b51afb7a15144ff98fec2df0e6ffd26e9c0e6f00e068811d4b502e3ded33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21371664&rft_id=info:pmid/9688147&rft_ieee_id=700727&rfr_iscdi=true |