Loading…

A telescoping method for double summations

We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F ( n , i , j ) , we aim to find a difference operator L = a 0 ( n ) N 0 + a 1 ( n ) N 1 + ⋯ + a r ( n ) N r and rational functions R 1 ( n , i , j ) , R 2 ( n , i , j ) such that LF = Δ i ( R 1 F )...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2006-11, Vol.196 (2), p.553-566
Main Authors: Chen, William Y.C., Hou, Qing-Hu, Mu, Yan-Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513
cites cdi_FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513
container_end_page 566
container_issue 2
container_start_page 553
container_title Journal of computational and applied mathematics
container_volume 196
creator Chen, William Y.C.
Hou, Qing-Hu
Mu, Yan-Ping
description We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F ( n , i , j ) , we aim to find a difference operator L = a 0 ( n ) N 0 + a 1 ( n ) N 1 + ⋯ + a r ( n ) N r and rational functions R 1 ( n , i , j ) , R 2 ( n , i , j ) such that LF = Δ i ( R 1 F ) + Δ j ( R 2 F ) . Based on simple divisibility considerations, we show that the denominators of R 1 and R 2 must possess certain factors which can be computed from F ( n , i , j ) . Using these factors as estimates, we may find the numerators of R 1 and R 2 by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews–Paule identity, Carlitz's identities, the Apéry–Schmidt–Strehl identity, the Graham–Knuth–Patashnik identity, and the Petkovšek–Wilf–Zeilberger identity.
doi_str_mv 10.1016/j.cam.2005.10.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28672434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042705006205</els_id><sourcerecordid>28672434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG-96EHomslH0-BpEb9gwYueQzadapa2WZNW8N-bZRe8eRpmeN53Zl5CLoEugEJ1u1k42y8YpTL3Cwr0iMygVroEpepjMqNcqZIKpk7JWUobSmmlQczIzbIYscPkwtYPH0WP42doijbEognTusMiTX1vRx-GdE5OWtslvDjUOXl_fHi7fy5Xr08v98tV6QSFsdRWtBVTstaKV1Iib5nVUnOXD7EU0CEwKRQTrLIg17wRFmusOV0Ds0wCn5Prve82hq8J02h6nxx2nR0wTMmwuspqLjIIe9DFkFLE1myj7238MUDNLhWzMTkVs0tlN8qpZM3VwdwmZ7s22sH59CdUWoOu6szd7TnMn357jCY5j4PDxkd0o2mC_2fLL65ddNc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28672434</pqid></control><display><type>article</type><title>A telescoping method for double summations</title><source>Elsevier</source><creator>Chen, William Y.C. ; Hou, Qing-Hu ; Mu, Yan-Ping</creator><creatorcontrib>Chen, William Y.C. ; Hou, Qing-Hu ; Mu, Yan-Ping</creatorcontrib><description>We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F ( n , i , j ) , we aim to find a difference operator L = a 0 ( n ) N 0 + a 1 ( n ) N 1 + ⋯ + a r ( n ) N r and rational functions R 1 ( n , i , j ) , R 2 ( n , i , j ) such that LF = Δ i ( R 1 F ) + Δ j ( R 2 F ) . Based on simple divisibility considerations, we show that the denominators of R 1 and R 2 must possess certain factors which can be computed from F ( n , i , j ) . Using these factors as estimates, we may find the numerators of R 1 and R 2 by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews–Paule identity, Carlitz's identities, the Apéry–Schmidt–Strehl identity, the Graham–Knuth–Patashnik identity, and the Petkovšek–Wilf–Zeilberger identity.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2005.10.010</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Computer science; control theory; systems ; Double summation ; Exact sciences and technology ; Hypergeometric term ; Mathematical analysis ; Mathematics ; Sciences and techniques of general use ; Special functions ; Theoretical computing ; Zeilberger's algorithm</subject><ispartof>Journal of computational and applied mathematics, 2006-11, Vol.196 (2), p.553-566</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513</citedby><cites>FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17991968$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, William Y.C.</creatorcontrib><creatorcontrib>Hou, Qing-Hu</creatorcontrib><creatorcontrib>Mu, Yan-Ping</creatorcontrib><title>A telescoping method for double summations</title><title>Journal of computational and applied mathematics</title><description>We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F ( n , i , j ) , we aim to find a difference operator L = a 0 ( n ) N 0 + a 1 ( n ) N 1 + ⋯ + a r ( n ) N r and rational functions R 1 ( n , i , j ) , R 2 ( n , i , j ) such that LF = Δ i ( R 1 F ) + Δ j ( R 2 F ) . Based on simple divisibility considerations, we show that the denominators of R 1 and R 2 must possess certain factors which can be computed from F ( n , i , j ) . Using these factors as estimates, we may find the numerators of R 1 and R 2 by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews–Paule identity, Carlitz's identities, the Apéry–Schmidt–Strehl identity, the Graham–Knuth–Patashnik identity, and the Petkovšek–Wilf–Zeilberger identity.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Double summation</subject><subject>Exact sciences and technology</subject><subject>Hypergeometric term</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><subject>Theoretical computing</subject><subject>Zeilberger's algorithm</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG-96EHomslH0-BpEb9gwYueQzadapa2WZNW8N-bZRe8eRpmeN53Zl5CLoEugEJ1u1k42y8YpTL3Cwr0iMygVroEpepjMqNcqZIKpk7JWUobSmmlQczIzbIYscPkwtYPH0WP42doijbEognTusMiTX1vRx-GdE5OWtslvDjUOXl_fHi7fy5Xr08v98tV6QSFsdRWtBVTstaKV1Iib5nVUnOXD7EU0CEwKRQTrLIg17wRFmusOV0Ds0wCn5Prve82hq8J02h6nxx2nR0wTMmwuspqLjIIe9DFkFLE1myj7238MUDNLhWzMTkVs0tlN8qpZM3VwdwmZ7s22sH59CdUWoOu6szd7TnMn357jCY5j4PDxkd0o2mC_2fLL65ddNc</recordid><startdate>20061115</startdate><enddate>20061115</enddate><creator>Chen, William Y.C.</creator><creator>Hou, Qing-Hu</creator><creator>Mu, Yan-Ping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061115</creationdate><title>A telescoping method for double summations</title><author>Chen, William Y.C. ; Hou, Qing-Hu ; Mu, Yan-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Double summation</topic><topic>Exact sciences and technology</topic><topic>Hypergeometric term</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><topic>Theoretical computing</topic><topic>Zeilberger's algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, William Y.C.</creatorcontrib><creatorcontrib>Hou, Qing-Hu</creatorcontrib><creatorcontrib>Mu, Yan-Ping</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, William Y.C.</au><au>Hou, Qing-Hu</au><au>Mu, Yan-Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A telescoping method for double summations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2006-11-15</date><risdate>2006</risdate><volume>196</volume><issue>2</issue><spage>553</spage><epage>566</epage><pages>553-566</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>We present a method to prove hypergeometric double summation identities. Given a hypergeometric term F ( n , i , j ) , we aim to find a difference operator L = a 0 ( n ) N 0 + a 1 ( n ) N 1 + ⋯ + a r ( n ) N r and rational functions R 1 ( n , i , j ) , R 2 ( n , i , j ) such that LF = Δ i ( R 1 F ) + Δ j ( R 2 F ) . Based on simple divisibility considerations, we show that the denominators of R 1 and R 2 must possess certain factors which can be computed from F ( n , i , j ) . Using these factors as estimates, we may find the numerators of R 1 and R 2 by guessing the upper bounds of the degrees and solving systems of linear equations. Our method is valid for the Andrews–Paule identity, Carlitz's identities, the Apéry–Schmidt–Strehl identity, the Graham–Knuth–Patashnik identity, and the Petkovšek–Wilf–Zeilberger identity.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2005.10.010</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2006-11, Vol.196 (2), p.553-566
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_28672434
source Elsevier
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Computer science
control theory
systems
Double summation
Exact sciences and technology
Hypergeometric term
Mathematical analysis
Mathematics
Sciences and techniques of general use
Special functions
Theoretical computing
Zeilberger's algorithm
title A telescoping method for double summations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T02%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20telescoping%20method%20for%20double%20summations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Chen,%20William%20Y.C.&rft.date=2006-11-15&rft.volume=196&rft.issue=2&rft.spage=553&rft.epage=566&rft.pages=553-566&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2005.10.010&rft_dat=%3Cproquest_cross%3E28672434%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-9a4f62758973655e3f2a9593c778a01ece125472426a15b3d4ae8e830b12a2513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28672434&rft_id=info:pmid/&rfr_iscdi=true