Loading…

Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media

The absorption and emission properties of transition metal (TM)-doped zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media. Crystals of ZnS, ZnSe, and ZnTe, individually doped with Cr/sup 2+/, Co/sup 2+/, Ni/sup 2+/...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 1996-06, Vol.32 (6), p.885-895
Main Authors: DeLoach, L.D., Page, R.H., Wilke, G.D., Payne, S.A., Krupke, W.F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The absorption and emission properties of transition metal (TM)-doped zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media. Crystals of ZnS, ZnSe, and ZnTe, individually doped with Cr/sup 2+/, Co/sup 2+/, Ni/sup 2+/, or Fe/sup 2+/ have been evaluated. The absorption and emission properties are presented and discussed in terms of the energy levels from which they arise. The absorption spectra of the crystals studied exhibit strong bands between 1.4 and 2.0 /spl mu/m which overlap with the output of strained-layer InGaAs diodes. The room-temperature emission spectra reveal wide-band emissions from 2-3 /spl mu/m for Cr and from 2.8-4.0 /spl mu/m for Co, Cr luminesces strongly at room temperature; Co exhibits significant losses from nonradiative decay at temperatures above 200 K, and Ni and Fe only luminesce at low temperatures, Cr/sup 2+/ is estimated to have the highest quantum yield at room temperature among the media investigated with values of /spl sim/75-100%. Laser demonstrations of Cr:ZnS and Cr:ZnSe have been performed in a laser-pumped laser cavity with a Co:MgF/sub 2/ pump laser. The output of both lasers were determined to peak at wavelengths near 2.35 /spl mu/m, and both lasers demonstrated a maximum slope efficiency of approximately 20%. Based on these initial results, the Cr/sup 2+/ ion is predicted to be a highly favorable laser ion for the mid-IR when doped into the zinc chalcogenides; Co/sup 2+/ may also serve usefully, but laser demonstrations yet remain to be performed.
ISSN:0018-9197
1558-1713
DOI:10.1109/3.502365